Culture-based methods to detect the six major non-O157 (O26, O45, O103, O111, O121 and O145) Shiga toxin-producing E. coli (STEC) are not well established. Our objectives of this study were to develop a culture-based method to detect the six non-O157 serogroups in cattle feces and compare the detection with a PCR method. Fecal samples (n = 576) were collected in a feedlot from 24 pens during a 12-week period and enriched in E. coli broth at 40° C for 6 h. Enriched samples were subjected to immunomagnetic separation, spread-plated onto a selective chromogenic medium, and initially pooled colonies, and subsequently, single colonies were tested by a multiplex PCR targeting six serogroups and four virulence genes, stx1, stx2, eae, and ehxA (culture method). Fecal suspensions, before and after enrichment, were also tested by a multiplex PCR targeting six serogroups and four virulence genes (PCR method). There was no difference in the proportions of fecal samples that tested positive (74.3 vs. 77.4%) for one or more of the six serogroups by either culture or the PCR method. However, each method detected one or more of the six serogroups in samples that were negative by the other method. Both culture method and PCR indicated that O26, O45, and O103 were the dominant serogroups. Higher proportions (P < 0.05) of fecal samples were positive for O26 (44.4 vs. 22.7%) and O121 (22.9 vs. 2.3%) serogroups by PCR than by the culture method. None of the fecal samples contained more than four serogroups. Only a small proportion of the six serogroups (23/640; 3.6%) isolated carried Shiga toxin genes. The culture method and the PCR method detected all six serogroups in samples negative by the other method, highlighting the importance of subjecting fecal samples to both methods for accurate detection of the six non-O157 STEC in cattle feces.
The United States Department of Agriculture Food Safety and Inspection Service has declared seven Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw, nonintact beef products. The objective of this study was to determine the prevalence of these seven serogroups and the associated virulence genes (Shiga toxin [stx1, stx2], and intimin [eae]) in cattle feces during summer (June-August 2013) and winter (January-March 2014) months. Twenty-four pen floor fecal samples were collected from each of 24 cattle pens, in both summer and winter months, at a commercial feedlot in the United States. Samples were subjected to culture-based detection methods that included enrichment, serogroup-specific immunomagnetic separation and plating on selective media, followed by a multiplex polymerase chain reaction for serogroup confirmation and virulence gene detection. A sample was considered STEC positive if a recovered isolate harbored an O gene, stx1, and/or stx2, and eae genes. All O serogroups of interest were detected in summer months, and model-adjusted prevalence estimates are as follows: O26 (17.8%), O45 (14.6%), O103 (59.9%), O111 (0.2%), O121 (2.0%), O145 (2.7%), and O157 (41.6%); however, most non-O157 isolates did not harbor virulence genes. The cumulative model-adjusted sample-level prevalence estimates of STEC O26, O103, O145, and O157 during summer (n=576) were 1.0, 1.6, 0.8, and 41.4%, respectively; STEC O45, O111, and O121 were not detected during summer months. In winter, serogroups O26 (0.9%), O45 (1.5%), O103 (40.2%), and O121 (0.2%) were isolated; however, no virulence genes were detected in isolates from cattle feces collected during winter (n=576). Statistically significant seasonal differences in prevalence were identified for STEC O103 and O157 (p<0.05), but data on other STEC were sparse. The results of this study indicate that although non-O157 serogroups were present, non-O157 STEC were rarely detected in feces from the feedlot cattle populations tested in summer and winter months.
Several real-time polymerase chain reaction (PCR) assays have been developed to detect and quantify Shiga toxin-producing Escherichia coli (STEC) O157:H7, but none have targeted the O-antigen specific gene (rfbEO157) in combination with the three major virulence genes, stx1, stx2, and eae. Our objectives were to develop and validate a four-plex, quantitative PCR (mqPCR) assay targeting rfbE(O157), stx1, stx2, and eae for the detection and quantification of STEC O157 in cattle feces, and compare the applicability of the assay to detect STEC O157 to a culture method and conventional PCR (cPCR) targeting the same four genes. Specificity of the mqPCR assay to differentially detect the four genes was confirmed with strains of O157 and non-O157 STEC with different profiles of target genes. In cattle feces spiked with pure cultures, detection limits were 2.8×10(4) and 2.8×10(0) colony-forming units/g before and after enrichment, respectively. Detection of STEC O157 in feedlot cattle fecal samples (n=278) was compared between mqPCR, cPCR, and a culture method. The mqPCR detected 48.9% (136/278) of samples as positive for E. coli O157. Of the 100 samples that were randomly picked from 136 mqPCR-positive samples, 35 and 48 tested positive by cPCR and culture method, respectively. Of the 100 samples randomly chosen from 142 mqPCR-negative samples, all were negative by cPCR, but 21 samples tested positive by the culture method. McNemar's chi-square tests indicated significant disagreement between the proportions of positive samples detected by the three methods. In conclusion, the mqPCR assay that targets four genes is a novel and more sensitive method than the cPCR or culture method to detect STEC O157 in cattle feces. However, the use of real-time PCR as a screening method to identify positive samples and then subjecting only positive samples to a culture method may underestimate the presence of STEC O157 in fecal samples.
The objective of this study was to determine feedlot- and pen-level fecal prevalence of seven enterohemorrhagic Escherichia coli (EHEC) belonging to serogroups (O26, O45, O103, O111, O121, O145, and O157, or EHEC-7) in feces of feedlot cattle in two feeding areas in the United States. Cattle pens from four commercial feedlots in each of the two major U.S. beef cattle areas were sampled. Up to 16 pen-floor fecal samples were collected from each of 4-6 pens per feedlot, monthly, for a total of three visits per feedlot, from June to August, 2014. Culture procedures including fecal enrichment in E. coli broth, immunomagnetic separation, and plating on selective media, followed by confirmation through polymerase chain reaction (PCR) testing, were conducted. Generalized linear mixed models were fitted to estimate feedlot-, pen-, and sample-level fecal prevalence of EHEC-7 and to evaluate associations between potential demographic and management risk factors with feedlot and within-pen prevalence of EHEC-7. All study feedlots and 31.0% of the study pens had at least one non-O157 EHEC-positive fecal sample, whereas 62.4% of pens tested positive for EHEC O157; sample-level prevalence estimates ranged from 0.0% for EHEC O121 to 18.7% for EHEC O157. Within-pen prevalence of EHEC O157 varied significantly by sampling month; similarly within-pen prevalence of non-O157 EHEC varied significantly by month and by the sex composition of the pen (heifer, steer, or mixed). Feedlot management factors, however, were not significantly associated with fecal prevalence of EHEC-7. Intraclass correlation coefficients for EHEC-7 models indicated that most of the variation occurred between pens, rather than within pens, or between feedlots. Hence, the potential combination of preharvest interventions and pen-level management strategies may have positive food safety impacts downstream along the beef chain.
Escherichia coli O104:H4, an hybrid pathotype of Shiga toxigenic and enteroaggregative E. coli, involved in a major foodborne outbreak in Germany in 2011, has not been detected in cattle feces. Serogroup O104 with H type other than H4 has been reported to cause human illnesses, but their prevalence and characteristics in cattle have not been reported. Our objectives were to determine the prevalence of E. coli O104 in feces of feedlot cattle, by culture and PCR detection methods, and characterize the isolated strains. Rectal fecal samples from a total of 757 cattle originating from 29 feedlots were collected at a Midwest commercial slaughter plant. Fecal samples, enriched in E. coli broth, were subjected to culture and PCR methods of detection. The culture method involved immunomagnetic separation with O104-specific beads and plating on a selective chromogenic medium, followed by serogroup confirmation of pooled colonies by PCR. If pooled colonies were positive for the wzxO104 gene, then colonies were tested individually to identify wzxO104-positive serogroup and associated genes of the hybrid strains. Extracted DNA from feces were also tested by a multiplex PCR to detect wzxO104-positive serogroup and associated major genes of the O104 hybrid pathotype. Because wzxO104 has been shown to be present in E. coli O8/O9/O9a, wzxO104-positive isolates and extracted DNA from fecal samples were also tested by a PCR targeting wbdDO8/O9/O9a, a gene specific for E. coli O8/O9/O9a serogroups. Model-adjusted prevalence estimates of E. coli O104 (positive for wzxO104 and negative for wbdDO8/O9/O9a) at the feedlot level were 5.7% and 21.2%, and at the sample level were 0.5% and 25.9% by culture and PCR, respectively. The McNemar’s test indicated that there was a significant difference (P < 0.01) between the proportions of samples that tested positive for wzxO104 and samples that were positive for wzxO104, but negative for wbdDO8/O9/O9a by PCR and culture methods. A total of 143 isolates, positive for the wzxO104, were obtained in pure culture from 146 positive fecal samples. Ninety-two of the 143 isolates (64.3%) also tested positive for the wbdDO8/O9/O9a, indicating that only 51 (35.7%) isolates truly belonged to the O104 serogroup (positive for wzxO104 and negative for wbdDO8/O9/O9a). All 51 isolates tested negative for eae, and 16 tested positive for stx1 gene of the subtype 1c. Thirteen of the 16 stx1-positive O104 isolates were from one feedlot. The predominant serotype was O104:H7. Pulsed-field gel electrophoresis analysis indicated that stx1-positive O104:H7 isolates had 62.4% homology to the German outbreak strain and 67.9% to 77.5% homology to human diarrheagenic O104:H7 strains. The 13 isolates obtained from the same feedlot were of the same PFGE subtype with 100% Dice similarity. Although cattle do not harbor the O104:H4 pathotype, they do harbor and shed Shiga toxigenic O104 in the feces and the predominant serotype was O104:H7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.