Many studies on brain–computer interface (BCI) have sought to understand the emotional state of the user to provide a reliable link between humans and machines. Advanced neuroimaging methods like electroencephalography (EEG) have enabled us to replicate and understand a wide range of human emotions more precisely. This physiological signal, i.e., EEG-based method is in stark comparison to traditional non-physiological signal-based methods and has been shown to perform better. EEG closely measures the electrical activities of the brain (a nonlinear system) and hence entropy proves to be an efficient feature in extracting meaningful information from raw brain waves. This review aims to give a brief summary of various entropy-based methods used for emotion classification hence providing insights into EEG-based emotion recognition. This study also reviews the current and future trends and discusses how emotion identification using entropy as a measure to extract features, can accomplish enhanced identification when using EEG signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.