No abstract
A needle-free delivery system may lead to improved satisfaction and compliance, as well as reduced anxiety among patients requiring frequent or ongoing injections. This report describes a first-in-man assessment comparing Portal Instruments' innovative needle-free injection system with subcutaneous injections using a 27G needle. Forty healthy volunteer participants each received a total of four injections of 1.0 mL sterile saline solution, two with a standard subcutaneous injection using a 27G needle, and two using the Portal injection system. Perception of pain was measured using a 100-mm visual analog scale (VAS). Injection site reactions were assessed at 2 min and at 20-30 min after each injection. Follow-up contact was made 24-48 h after the injections. Subject preference regarding injection type was also assessed. VAS pain scores at Portal injection sites met the criteria to be considered non-inferior to the pain reported at 27G needle injection sites (i.e., upper 95% confidence bound less than +5 mm). Based on a mixed effects model, at time 0, accounting for potential confounding variables, the adjusted difference in VAS scores indicated that Portal injections were 6.5 mm lower than the 27G needle injections (95% CI -10.5, -2.5). No clinically important adverse events were noted. Portal injections were preferred by 24 (60%) of the subjects (P = 0.0015). As an early step in the development of this new needle-free delivery system, the current study has shown that a 1.0-mL saline injection can be given with less pain reported than a standard subcutaneous injection using a 27G needle.
The tools used to work with Printed Circuit Boards (PCBs), for example soldering iron, multi-meter and oscilloscope involve working directly with the board and the board components. However, the Electronic Design Automation (EDA) software used to query a PCB's design data requires using a keyboard and a mouse. These different interfaces make it difficult to connect both kinds of operations in a workflow. Further, the measurements made by tools like a multi-meter have to be understood in the context of the schematics of the board manually. We propose a solution to reduce the cognitive load of this disconnect by introducing a handheld probe that allows for direct interactions with the PCB for just-in-time information on board schematics, component datasheets and source code. The probe also doubles up as a voltmeter and annotates the schematics of the board with voltage measurements.
We present Nishanchi, a position and orientation aware handheld inkjet printer which can be used to transfer the reference marks from CAD to the workpiece for use in manual fabrication workflows. Nishanchi also has a digitizing tip that can be used to input features about the workpiece to a computer model. By allowing for this two-way exchange of information from CAD to a nonconcormal workpiece, we believe that Nishanchi might help make inclusion of CAD in manual fabrication workflows more seamless.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.