Abstract. Cloud radars are capable of providing continuous high-resolution observations of clouds and now offer new capabilities within fog layers thanks to the development of frequency-modulated continuous-wave 95 GHz cloud radars. These observations are related to the microphysical properties of clouds. Power law relations in the form of Z=a⋅LWCb are generally used to estimate liquid water content (LWC) profiles. The constants a and b from the power law relation vary with the cloud type and cloud characteristics. Due to the variety of such parameterizations, selecting the most appropriate Z–LWC relation for a continuous cloud system is complicated. Additional information such as liquid water path (LWP) from a co-located microwave radiometer (MWR) is used to scale the LWC of the cloud profile. An algorithm for estimating the LWC of fog and warm clouds using 95 GHz cloud radar–microwave radiometer synergy in a variational framework is presented. This paper also aims to propose an algorithm configuration that retrieves the LWC of clouds and fog using radar reflectivity and a climatology of the power law parameters. To do so, variations in the scaling factor ln a (the logarithm of pre-factor a from power law relation) when MWR observations are available are allowed in each cloud profile to build a climatology of the scaling factor ln a that can be used when MWR observations are not available. The algorithm also accounts for attenuation due to cloud droplets. In this algorithm formulation, the measure of uncertainty in the observations, the forward model, and the a priori information of desired variables acts as weights in the retrieved quantities. These uncertainties in the retrieval are analyzed in the sensitivity analysis of the algorithm. The retrieval algorithm is first tested on a synthetic profile for different perturbations in sensitivity parameters. The sensitivity study has shown that this method is susceptible to LWP information because LWP is point information for the whole cloud column. By further investigating the sensitivity analysis of various biases in LWP information, it was found that it is beneficial to incorporate LWP, even if it is biased, rather than not assimilate any LWP. The algorithm is then implemented in various cloud and fog cases at the SIRTA observatory to estimate LWC and the scaling factor. The scaling factor (ln a) changes for each cloud profile, and the range of ln a is consistent with suggested values in the literature. The validation of such an algorithm is challenging, as we need reference measurements of LWC co-located with the retrieved values. During the SOFOG-3D campaign (southwest of France, October 2019 to March 2020), in situ measurements of LWC were collected in the vicinity of a cloud radar and a microwave radiometer, allowing comparison of retrieved and measured LWC. The comparison demonstrated that the cloud–fog heterogeneity played a key role in the assessment. The proposed synergistic retrieval algorithm is applied to 39 cloud and fog cases at SIRTA, and the behavior of the scaling factor is studied. This statistical analysis of scaling is carried out to develop a radar-only retrieval method. The climatology revealed that the scaling factor can be linked to the maximum reflectivity of the profile. From climatology, the statistical relations for the scaling factor are proposed for fog and clouds. Thanks to the variational framework, a stand-alone radar version of the algorithm is adapted from the synergistic retrieval algorithm, which incorporates the climatology of the scaling factor as a priori information to estimate the LWC of warm clouds. This method allows the LWC estimation using only radar reflectivity and climatology of the scaling factor.
<p>Transportation especially aviation sector all around the world is severely hindered due to Fog and hence observations and specific research for fog is necessary. The SOFOG3D (SOuth west FOGs 3D) experiment took place in South-West of France which is particularly prone to fog occurrence, during the period between November 2019 to March 2020 with primary objective to advance our understanding of fog processes and to improve fog forecast. Simultaneous measurements from various remote sensing instruments like BASTA: a 95 GHz cloud radar with scanning capability, HATPRO Microwave radiometer (MWR), doppler lidar, and balloon-borne in-situ measurements were collected to characterize the spatio-temporal evolution of Fog. On the supersite, detailed measurements of meteorological conditions, aerosol properties, fog microphysics, water deposition, radiation budget, heat, and momentum fluxes are collected to provide 3D structure of the boundary layer during fog events. The improvement in the retrieval of fog parameters and understanding of fog dynamics based on cloud radar and microwave (MWR) synergy will be addressed. We will present our work on the retrieval of key fog parameters like dynamics and microphysics using a combination of cloud radar and MWR observations. The retrievals will be validated with the tethered-balloon and radio-sounding observations. In-situ measurements and remote-sensing retrievals of fog microphysical properties will be compared. We will show a detailed analysis of retrieved LWP derived from BASTA radar only with LWP derived from HATPRO microwave radiometer, considering instrumental uncertainty and sensitivity. A closer analysis of the in-situ data (measured by granulometer) will be presented in order to assess and improve the retrieval derived with cloud radar in vertically pointing mode. Radar attenuation will be quantified by measuring the backscattered radar signal on well-known calibrated reflectivity metallic targets installed at the top of 20 m mast. The integrated attenuation along the radar beam path will be measured by the cloud radar and used as a new constraint to improve the microphysical properties.</p>
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.