Aging is known in all organisms that have different somatic and reproductive cells or in unicellular organisms that divide asymmetrically. Bacteria that divide symmetrically were believed to be immune to natural aging. The demonstration of functionally asymmetric division and aging in Escherichia coli recently has challenged this belief and led to the suggestion that aging might be inevitable for all life forms. We modeled the effects of symmetric and asymmetric division in bacteria to examine selective advantages of the alternative strategies of division. Aging of cell components was modeled by using a modified Leslie matrix framework. The model suggests that asymmetric division accompanied by aging and death of some cells results in a higher growth rate but a reduced growth yield. Symmetric division with or without gradual replacement of the old components, on the other hand, slows down the growth rate but may increase growth yield over a wide range of conditions. Thus, aging and immortality can be selected under different sets of conditions, and this selection may also lead to a tradeoff between growth rate and growth yield.Leslie matrix ͉ prokaryotic cell division
These findings suggest that GMZ2 adjuvanted in Al(OH)3 elicits high levels of specific and functional antibodies with the capacity to control parasite multiplication.
Background: Allergic rhinoconjunctivitis is a public health problem. Allergen Immunotherapy is an effective and safe treatment, that modifies the natural course of allergic disease and induces long-term tolerance.Objective: To correlate basophil and antibody biomarkers of subcutaneous immunotherapy to clinical outcomes and cellular changes in target tissue.Methods: Adults suffering from allergic rhinoconjunctivitis due to grass pollen allergy were randomized to receive subcutaneous immunotherapy (n = 18) or to an open control group (n = 6). Patients reported daily symptom and medication scores and weekly rhinitis related quality of life scores during four pollen seasons. Biomarkers were measured every 3 months for three years treatment and every 6 months in the follow-up year. Nasal and cutaneous allergen challenge tests were performed annually. Leukocyte subsets were assessed in nasal mucosa biopsies at baseline and after treatment.Results: Subcutaneous immunotherapy led to a 447-fold decrease in basophil sensitivity during the first treatment year. This remained 100-fold lower than baseline during the 3 year-treatment period and 10-fold lower during the follow-up year (n = 18, P = .03). Decrease in basophil sensitivity after three weeks of treatment predicted long-term improvement in seasonal combined symptom and medication scores (ῥ=−0.69, P = .0027) during three years of treatment. AUC of IgE-blocking factor correlated to nasal allergen challenge (ῥ = 0.63, P = .0012) and SPT (ῥ = 0.45, P = .03).Plasma cell numbers in the nasal mucosa increased during treatment (P = .02).
Conclusion:Decrease in basophil sensitivity after three weeks of subcutaneous allergen immunotherapy predicted the clinical outcome of this treatment.
Although elevated blood or sputum eosinophils are present in many patients with COPD, uncertainties remain regarding the anatomical distribution pattern of lung-infiltrating eosinophils. Basophils have remained virtually unexplored in COPD. This study mapped tissue-infiltrating eosinophils, basophils and eosinophil-promoting immune mechanisms in COPD-affected lungs.Surgical lung tissue and biopsies from major anatomical compartments were obtained from COPD patients with severity grades Global Initiative for Chronic Obstructive Lung Disease stages I–IV; never-smokers/smokers served as controls. Automated immunohistochemistry and in situ hybridisation identified immune cells, the type 2 immunity marker GATA3 and eotaxins (CCL11, CCL24).Eosinophils and basophils were present in all anatomical compartments of COPD-affected lungs and increased significantly in very severe COPD. The eosinophilia was strikingly patchy, and focal eosinophil-rich microenvironments were spatially linked with GATA3+ cells, including type 2 helper T-cell lymphocytes and type 2 innate lymphoid cells. A similarly localised and interleukin-33/ST2-dependent eosinophilia was demonstrated in influenza-infected mice. Both mice and patients displayed spatially confined eotaxin signatures with CCL11+ fibroblasts and CCL24+ macrophages.In addition to identifying tissue basophilia as a novel feature of advanced COPD, the identification of spatially confined eosinophil-rich type 2 microenvironments represents a novel type of heterogeneity in the immunopathology of COPD that is likely to have implications for personalised treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.