We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.
We aimed to determine the isolated and combined contribution of hypovolaemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxaemia at high altitude. In a double-blinded, randomised and placebo-controlled design, 12 healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5-10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values: high altitude (HA), Plasma Volume Expansion (HA-PVX), Sildenafil (HA-SIL) and Plasma Volume Expansion with Sildenafil (HA-PVX-SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 ± 4.3 vs. 26.0 ± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV end-diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HA-PVX trial. LV EDV and SV were also elevated in the HA-SIL and HA-PVX-SIL trials compared to HA, but to a lesser extent. Neither PVX nor SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolaemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, but restoring LV filling does not confer an improvement in maximal exercise performance.
We hypothesized that 1) acute severe hypoxia, but not hyperoxia, at sea level would impair dynamic cerebral autoregulation (CA); 2) impairment in CA at high altitude (HA) would be partly restored with hyperoxia; and 3) hyperoxia at HA and would have more influence on blood pressure (BP) and less influence on middle cerebral artery blood flow velocity (MCAv). In healthy volunteers, BP and MCAv were measured continuously during normoxia and in acute hypoxia (inspired O2 fraction = 0.12 and 0.10, respectively; n = 10) or hyperoxia (inspired O2 fraction, 1.0; n = 12). Dynamic CA was assessed using transfer-function gain, phase, and coherence between mean BP and MCAv. Arterial blood gases were also obtained. In matched volunteers, the same variables were measured during air breathing and hyperoxia at low altitude (LA; 1,400 m) and after 1-2 days after arrival at HA ( approximately 5,400 m, n = 10). In acute hypoxia and hyperoxia, BP was unchanged whereas it was decreased during hyperoxia at HA (-11 +/- 4%; P < 0.05 vs. LA). MCAv was unchanged during acute hypoxia and at HA; however, acute hyperoxia caused MCAv to fall to a greater extent than at HA (-12 +/- 3 vs. -5 +/- 4%, respectively; P < 0.05). Whereas CA was unchanged in hyperoxia, gain in the low-frequency range was reduced during acute hypoxia, indicating improvement in CA. In contrast, HA was associated with elevations in transfer-function gain in the very low- and low-frequency range, indicating CA impairment; hyperoxia lowered these elevations by approximately 50% (P < 0.05). Findings indicate that hyperoxia at HA can partially improve CA and lower BP, with little effect on MCAv.
Key Points Summary-Our objective was to quantify endothelial function (via brachial artery flow-mediated dilatation) at sea-level (344m) and high-altitude (3800m) at rest and following both maximal exercise and 30-minutes of moderate-intensity cycling exercise with and without administration of an 1-adrenergic blockade.-Brachial endothelial function did not differ between sea-level and high-altitude at rest, nor following maximal exercise.-At sea-level, endothelial function decreased following 30-minutes of moderate-intensity exercise, and this decrease was abolished with 1-adrenergic blockade. At high-altitude, endothelial function did not decrease immediately post 30-minutes of moderate-intensity exercise, and administration of 1-adrenergic blockade resulted in an increase in flow mediated dilatation.-Our data indicates that post-exercise endothelial function is modified at high-altitude (i.e. prolonged hypoxemia). The current study helps elucidate the physiological mechanisms associated with high-altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. AbstractWe examined the hypotheses that 1) at rest, endothelial function would be impaired at high-altitude compared to sea-level, 2) endothelial function would be reduced to a greater extent at sea-level compared to high-altitude after maximal exercise, and 3) reductions in endothelial function following moderate-intensity exercise at both sea-level and high-altitude are mediated via an 1-adrenergic pathway. In a double-blinded, counter-balanced, randomized and placebo-controlled design, nine healthy participants performed a maximal-exercise test, and two 30-minute sessions of semi-recumbent cycling exercise at 50% peak Watt following either placebo or 1-adrenergic blockade (prazosin; 0.05mg/kg). These experiments were completed at both sea-level (344m) and high-altitude (3800m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded prior to, during, and following exercise. Endothelial function assessed by brachial artery flow-mediated dilatation (FMD) was measured prior to, immediately following, and 60-minutes post-exercise. Our findings were: 1) at rest, FMD remained unchanged between sea-level and high-altitude (placebo P=0.287; prazosin: P=0.110); 2) FMD remained unchanged after maximal exercise at sea-level and high-altitude (P=0.244); 3) the 2.90.8% (P=0.043) reduction in FMD immediately after moderate-intensity exercise at sea-level was abolished via 1-adrenergic blockade. Conversely, at high-altitude, FMD was unaltered following moderate-intensity exercise, and administration of 1-adrenergic blockade elevated FMD (P=0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxemia on exercise...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.