<p>The present COVID-19 global crisis invoked different disciplines of the biomedical research community to address the contagious human to human viral transmission and infection severity. Traditional or de novo drug discovery approach is a very time consuming process and will conflict with the urgency to discover new anti-viral drugs for combating the present global pandemic. Modern anti-viral drugs are not very effective and show resistance with serious adverse effects. Thus, identifying bioactive natural ingredients (phytochemical) from different medicinal plants or Ayurvedic formulations provides an effective alternative therapy for SARS-CoV-2 viral infections. We performed structure-based phytochemical design studies involving bioactive phytochemicals from medicinal plants towards two key druggable targets, spike glycoprotein and main protease (M<sup>pro</sup>) of SARS-CoV-2. Phyllaemblicin class of phytocompounds showed better binding affinity towards both these SARS-CoV-2 targets and its binding mode revealed interactions with critical amino acid residues at its active sites. Also, we have successfully shown that the SARS-CoV-2 spike glycoprotein interaction towards human ACE2 receptor as its port of human cellular entry was blocked due to conformational variations in ACE2 receptor recognition by the binding of the phytocompound, Phyllaemblicin C at the ACE2 binding domain of spike protein. Our study shows that the Phyllaemblicin class of phytochemicals can be a potential dual inhibitor of spike and M<sup>pro</sup> proteins of SARS-CoV-2 and could be promising for the treatment of COVID-19. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.