We make use of the Volunteered Geographic Information (VGI) data to extract the total extent of the roads using remote sensing images. VGI data is often provided only as vector data represented by lines and not as full extent. Also, high geolocation accuracy is not guaranteed and it is common to observe misalignment with the target road segments by several pixels on the images. In this work, we use the prior information provided by the VGI and extract the full road extent even if there is significant mis-registration between the VGI and the image. The method consists of image segmentation and traversal of multiple agents along available VGI information. First, we perform image segmentation, and then we traverse through the fragmented road segments using autonomous agents to obtain a complete road map in a semi-automatic way once the seed-points are defined. The road center-line in the VGI guides the process and allows us to discover and extract the full extent of the road network based on the image data. The results demonstrate the validity and good performance of the proposed method for road extraction that reflects the actual road width despite the presence of disturbances such as shadows, cars and trees which shows the efficiency of the fusion of the VGI and satellite images.
The acquisition of satellite images over a wide area is often carried out across seasons because of satellite orbits and atmospheric conditions (e.g., cloud cover, dust, etc.). This results in spectral mismatch between adjacent scenes as the sun angle and the atmospheric conditions will be different for different acquisitions. In this work, we developed an approach to generate seamless mosaics using Scale-Invariant Features Transformation (SIFT). In this process, we make use of the overlapping areas between two adjacent scenes and then map spectral values of one imagery scene to another based on the filtered points detected by SIFT features to create a seamless mosaic. We make use of the Random Sample Consensus (RANSAC) method successively to filter out obtained SIFT points across adjacent tiles and to remove spectral outliers across each band of an image. Several high resolution satellite images acquired with WorldView-2 and Dubaisat-2 satellites, and medium resolution Sentinel-2 satellite imagery are used for experimentation. The experimental results show that the proposed approach can generate good seamless mosaics. Furthermore, Sentinel-2’s level 2A (L2A) product surface reflectance data is used to adjust the spectral values for color consistency.
This work presents an approach to road network extraction in remote sensing images. In our earlier work, we worked on the extraction of the road network using a multi-agent approach guided by Volunteered Geographic Information (VGI). The limitation of this VGI-only approach is its inability to update the new road developments as it only follows the VGI. In this work, we employ a deep learning approach to update the road network to include new road developments not captured by the existing VGI. The output of the first stage is used to train a Convolutional Neural Network (CNN) in the second stage to generate a general model to classify road pixels. Post-processing is used to correct the undesired artifacts such as buildings, vegetation, occlusions, etc. to generate a final road map. Our proposed method is tested on the satellite images acquired over Abu Dhabi, United Arab Emirates and the aerial images acquired over Massachusetts, United States of America, and is observed to produce accurate results.
The rapid urbanization of the UAE, including medium sized cities like Al Ain City, has a significant relationship to local micro-climatic change. Al-Ain city in the southeast of the UAE and was originally an oasis. It has a hot and arid climate with a very dry and hot summer. The climate of the city is affected by the desert areas of red sand and the eastern Rocky Mountains. The local micro-climatic evolution can be studied and tracked using the local climate zone (LCZ) classification map. The districts of Al Ain are classified based on different factors, including surface cover and surface temperature, which were analysed using WUDAPT (World Urban Database and Access Portal Tools) software. The LCZ map is based on highresolution satellite images, which were used to classify regions based on building morphology and district pattern. The LCZ map results were compared with CFD (computational fluid dynamic) models that were simulated using ENVI-met software tool. The CFD models were optimized and validated based on on-site surveys and information taken from the local authorities, while the boundary conditions were validated using site measurements. Both models were analysed over the spring and summer seasons. Based on the results provided from WUDAPT and ENVI-met, a higher temperature was observed in the densest areas (downtown) and lower temperatures in the green zones (park, city date farms) and the result precision was higher in the colder season (autumn in this case).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.