Open-ocean polynyas (OOPs) in the Southern Ocean are ice-free areas within the winter ice pack that are associated with deep convection, potentially contributing to the formation of Antarctic Bottom Water. To enhance the credibility of Earth system models (ESMs), their ability to simulate OOPs realistically is thus crucial. Here we investigate OOPs that emerge intermittently in a high-resolution (HR) preindustrial simulation with the Energy Exascale Earth System Model, version 0.1 (E3SMv0), an offspring of the Community Earth System Model (CESM). While low-resolution (LR) simulations with E3SMv0 show no signs of OOP formation, the preindustrial E3SMv0-HR simulation produces both large Weddell Sea polynyas (WSPs) as well as small Maud Rise polynyas (MRPs). The latter are associated with a prominent seamount in the eastern Weddell Sea, and their preconditioning and formation is the focus of this study. The steep flanks of the rugged topography in this region are in E3SMv0-HR sufficiently well resolved for the impinging flow to produce pronounced Taylor caps that precondition the region for convection. Aided by an accumulation of heat in the Weddell Deep Water layer, the ultimate trigger of convection that leads to MRPs is the advection of anomalously high upper-ocean-layer salinity. The crucial difference to WSP-producing LR ESM simulations is that in E3SMv0-HR, WSPs are realistically preceded by MRPs, which in turn are a result of the flow around bathymetry being represented with unprecedented detail.
Larger Weddell Sea polynyas (WSPs), differentiated in this study from the smaller Maud Rise Polynyas (MRPs), forming to the east of the prime meridian in the proximity of the Maud Rise seamount, have last been observed in the 1970s. We investigate WSPs that grow realistically out of MRPs in a high-resolution (HR) preindustrial simulation with the Energy Exascale Earth System Model version 0.1. The formation of MRPs requires HR to simulate the detailed flow around Maud Rise, while the realistic formation of WSPs requires a model to produce MRPs. Furthermore, WSPs tend to follow periods of a prolonged build-up of a heat reservoir at depth and weakly negative wind-stress curl in association with the core of the southern hemisphere westerlies at an anomalously northern position. While this scenario also leads to drier conditions over the central Weddell Sea, which some literature claims to be a necessary condition for the formation of WSPs, our model results indicate that open-ocean polynyas do not occur during periods of weakly negative wind-stress curl despite drier atmospheric conditions. Our study supports the hypothesis noted in earlier studies that a shift from a weakly negative to a strongly negative wind-stress curl over the Weddell Sea is a prerequisite for WSPs to form, together with a large heat reservoir at depth. However, the ultimate trigger is a pronounced MRP; whose associated convection creates high surface salinity anomalies that propagate westward with the flow of the Weddell Gyre. If large enough, these anomalies trigger the formation of a WSP and a pulse of newly formed Antarctic Bottom Water.
The Atlantic Meridional Overturning Circulation (AMOC) plays a significant role in the global climate system, and its behavior in a warming climate is a matter of significant concern. The AMOC is thought to be driven largely by ocean heat loss in the subpolar North Atlantic Ocean, but recent research increasingly emphasizes the importance of the Arctic Mediterranean for the AMOC. In turn, the AMOC may influence the Arctic heat budget through its impact on poleward heat transport. Hence, understanding the processes that link the AMOC and the Arctic is critical for our ability to project how both may evolve in a warming climate. In this paper we review some of the recent research that is shaping our thinking about the AMOC and its two-way interactions with the Arctic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.