Within the limits of this retrospective analysis, our study demonstrates that eculizumab use may result in high response rate and 1-year survival in patients with TA-TMA refractory to discontinuation of calcineurin inhibitor and plasma exchange.
Hematopoietic stem cell transplant-associated thrombotic microangiopathy (TA-TMA) is a fatal, multifactorial disorder, which may present with thrombocytopenia, hemolysis, acute renal failure, mental status changes and involvement of other organs. The pathogenesis of TA-TMA is complex and includes multiple risk factors such as certain conditioning regimens, calcineurin inhibitors (CNIs), graft-versus-host disease (GVHD), human leukocyte antigen mismatch, and opportunistic infections. The end result of these insults is endothelial injury in the kidney and other organs. Recent studies also indicate a role of complement activation in tissue damage. The lack of sensitive and specific diagnostic tests for TA-TMA often results in delayed diagnosis. Biopsy is not always possible for diagnosis because of the risk of complications such as bleeding. Recently, an emerging role of renal-centered screening approach has been demonstrated, which utilize the monitoring of blood pressure, urine protein, serum lactate dehydrogenase and hemogram for early detection. Therapeutic options are limited, and plasma exchange plays a minor role. Withdrawal of offending agent such as CNIs and the use of rituximab can be effective in some patients. However, the current treatment strategy is suboptimal and associated with high mortality rate. Recently, eculizumab has been utilized in a few patients with good outcomes. Patients, who develop TA-TMA, are also at an increased risk of GVHD, infection, renal, cardiovascular, and other complications, which can contribute to high mortality. Better understanding of molecular pathogenesis, improvement in posttransplant management, leading to early diagnosis, and management of TA-TMA are required to improve outcomes of this fatal entity.
Thrombocytopenia in patients with chronic hepatitis C virus (HCV) infection is a major problem. The pathophysiology is multifactorial, with auto-immunogenicity, direct bone marrow suppression, hypersplenism, decreased production of thrombopoietin and therapeutic adverse effect all contributing to thrombocytopenia in different measures. The greatest challenge in the care of chronic HCV patients with thrombocytopenia is the difficulty in initiating or maintaining IFN containing anti-viral therapy. Although at present, it is possible to avoid this challenge with the use of the sole Direct Antiviral Agents (DAAs) as the primary treatment modality, thrombocytopenia remains of particular interest, especially in cases of advanced liver disease. The increased risk of bleeding with thrombocytopenia may also impede the initiation and maintenance of different invasive diagnostic and therapeutic procedures. While eradication of HCV infection itself is the most practical strategy for the remission of thrombocytopenia, various pharmacological and non-pharmacological therapeutic options, which vary in their effectiveness and adverse effect profiles, are available. Sustained increase in platelet count is seen with splenectomy and splenic artery embolization, in contrast to only transient rise with platelet transfusion. However, their routine use is limited by complications. Different thrombopoietin analogues have been tried. The use of synthetic thrombopoietins, such as recombinant human TPO and pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMDGF), has been hampered by the development of neutralizing antibodies. Thrombopoietin-mimetic agents, in particular, eltrombopag and romiplostim, have been shown to be safe and effective for HCV-related thrombocytopenia in various studies, and they increase platelet count without eliciting any immunogenicity Other treatment modalities including newer TPO analogues-AMG-51, PEG-TPOmp and AKR-501, recombinant human IL-11 (rhIL-11, Oprelvekin), recombinant human erythropoietin (rhEPO), danazol and L-carnitine have shown promising early result with improving thrombocytopenia. Thrombocytopenia in chronic HCV infection remain a major problem, however the recent change in DAAs without IFN, as the frontline therapy for HCV, permit to avoid the dilemmas associated with initiating or maintaining IFN based anti-viral therapy.
Non-vitamin K antagonist oral anticoagulants (NOACs) include thrombin inhibitor dabigatran and coagulation factor Xa inhibitors rivaroxaban, apixaban, edoxaban, and betrixaban. NOACs have several benefits over warfarin, including faster time to the achieve effect, rapid onset of action, fewer documented food and drug interactions, lack of need for routine INR monitoring, and improved patient satisfaction. Local hemostatic measures, supportive care, and withholding the next NOAC dose are usually sufficient to achieve hemostasis among patients presenting with minor bleeding. The administration of reversal agents should be considered in patients on NOAC's with major bleeding manifestations (life-threatening bleeding, or major uncontrolled bleeding), or those who require rapid anticoagulant reversal for an emergent surgical procedure. The Food and Drug Administration (FDA) has approved two reversal agents for NOACs: idarucizumab for dabigatran and andexanet alfa for apixaban and rivaroxaban. The American College of Cardiology (ACC), American Heart Association (AHA), and Heart Rhythm Society (HRS) have released an updated guideline for the management of patients with atrial fibrillation that provides indications for the use of these reversal agents. In addition, the final results of the ANNEXA-4 study that evaluated the efficacy and safety of andexanet alfa were recently published. Several agents are in different phases of clinical trials, and among them, ciraparantag has shown promising results. However, their higher cost and limited availability remains a concern. Here, we provide a brief review of the available reversal agents for NOACs (nonspecific and specific), recent updates on reversal strategies, lab parameters (including point-of-care tests), NOAC resumption, and agents in development.
Bleeding is the most common complication of all anticoagulants. Any bleeding patient on an anticoagulant should be risk-stratified based on hemodynamic instability, source of bleeding, and degree of blood loss. Although minor bleed may be managed with discontinuation of anticoagulant, major bleed may require transfusion of blood products and use of specific antidote. The residual effects of each anticoagulant may be monitored with distinct coagulation assay. Intravenous or oral vitamin K can reverse the effect of warfarin within 24 to 48 hours and is indicated for any bleeding, international normalized ratio of >10 or 4.5 to 10 in patients with other risk factors for bleeding. Fresh frozen plasma or prothrombin complex concentrate (PCC) may be necessary in major bleeding related to warfarin. Protamine sulfate reverses the effect of unfractionated heparin completely and of low-molecular-weight heparin (LMWH) partially. Idarucizumab has recently been approved in United States for dabigatran reversal, whereas andexanet alfa is expected to get approved in the near future for reversal of oral factor Xa inhibitors. The PCC may reverse the effect of rivaroxaban to some extent, but no data are available regarding reversal of apixaban and edoxaban. Aripazine has shown promising results to reverse the effects of LMWH, fondaparinux, and direct oral anticoagulants but is still in the developmental phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.