Point cloud is an efficient way of representing and storing 3D geometric data. Deep learning algorithms on point clouds are time and memory efficient. Several methods such as PointNet and FoldingNet have been proposed for processing point clouds. This work proposes an autoencoder based framework to generate robust embeddings for point clouds by utilizing hierarchical information using graph convolution. We perform multiple experiments to assess the quality of embeddings generated by the proposed encoder architecture and visualize the t-SNE map to highlight its ability to distinguish between different object classes. We further demonstrate the applicability of the proposed framework in applications like: 3D point cloud completion and Single image based 3D reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.