Nanoparticles of Zn1−xCuxO system with nominal compositions x = 0.0, 0.01, 0.02 and 0.03 were prepared by co-precipitation method at room temperature. Structural, morphological, optical and chemical species of grown crystals were investigated by X-ray diffraction (XRD) technique, Scanning Electron Microscopy (SEM), UV-visible and FTIR spectroscopy, respectively. XRD analysis confirms that all samples have hexagonal structure with no impurity phases which suggest that Cu ion successfully incorporated into the regular ZnO crystal structure. The lattice parameters, volume of unit cell, X-ray density, atomic packing fraction, c/a ratio, and grain size were calculated from XRD pattern of pure and Cu doped ZnO samples and it was found that the grain size was in the range of 23 nm to 29 nm. The strain in pure and Cu doped ZnO samples was calculated by W-H analysis. Optical properties of Zn1−xCuxO samples were studied by using UV-vis spectrophotometer. Optical absorption spectra show that the band gap decreases with increasing Cu contents. The functional group and chemical interactions of Zn1−xCuxO samples were also determined at various peaks using FTIR data and observed that the functional groups corresponding to the Zn-O bands in the samples. The photocatalytic activities of the samples were investigated by oxidation of methylene blue under UV light illumination in batch reactor. The scavenger study was carried out to find out main reactive species responsible for the degradation of dyes.
Rare-earth cerium (Ce)-doped zinc oxide (ZnO) spherical nanoparticles were synthesized by using the co-precipitation method. The doped materials were characterized by means of the X-ray diffraction, Williamson-Hall Plot, and field emission scanning electron microscopy analyses. The prepared nanoparticles exhibit a hexagonal wurtzite structure as observed from the XRD measurements. Energy dispersive X-ray spectroscopy data confirmed the purity of the prepared samples. The photocatalytic activity of the rare-earth Ce-doped ZnO spherical nanoparticles was investigated through the degradation of methylene blue (MB) and p-nitrophenol (PNP) solution under UV light radiation. Among the different amounts of dopant, 5 mole% Ce-doped ZnO nanoparticles showed the highest degradation with UV light radiation for both MB dye and PNP solution. The particle size, morphology, and separation of the photo-induced electron–hole pair are the main factors that influence photocatalytic activity. The probable mechanisms of photocatalytic degradation and mineralization of MB and PNP are also explained by liquid chromatography–mass spectrometry analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.