Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options.
Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited.
Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in
Enterobacteriaceae
.
Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible)
Enterobacteriaceae
were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR.
Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla
PER-1, bla
NDM-1, bla
OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible.
Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among
Enterobacteriaceae
, harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.
Highlights of the Study • The emergence of colistin-resistant Acinetobacter baumannii led to analysis of clinically isolated A. baumannii. • Isolates collected over 6 months were analysed for biofilm production, genes associated with antibiotic resistance and virulence, and mobile genetic elements (MGEs). • Strict implementation of infection control guidelines is critical to combat the spread of antimicrobial resistance.
Objective
M. morganii is a gram-negative, non-lactose fermenting and an opportunistic pathogen frequently associated with nosocomial infections. Although first isolated in 1906 from a pediatric fecal sample, not many M. morganii isolates have been sequenced. The objective of this work is to determine the complete genome sequence of an XDR M. morganii strain (SMM01) isolated from the urine of a patient with urinary and fecal incontinence and to characterize its antimicrobial resistance profile.
Data description
Here, we report the complete genome sequence of M. morganii SMM01 generated from the hybrid assembly of Illumina HiSeq X and Nanopore MinION reads. The assembly is 100% complete with genome size of 39,30,130 bp and GC content of 51%. Genomic features include 3617 CDS, 18 rRNAs, 78 tRNAs, 4 ncRNAs and 60 pseudogenes. Antimicrobial resistance profile was characterized by the presence of genes conferring resistance to aminoglycosides, β-lactams, fluoroquinolones, chloramphenicol, and tetracyclines. Secondary metabolite biosynthetic gene clusters like NRPS, T1PKS, thiopeptide, beta-lactone, and bacteriocin were identified. The genome data described here would be the first complete genome of an Indian M. morganii isolate providing crucial information on antimicrobial resistance patterns, paving the way for further comparative genome analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.