HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -α and -δ, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.
In the current study, we examined the effects of the nonpsychoactive cannabinoid, cannabidiol, on the induction of apoptosis in leukemia cells. Exposure of leukemia cells to cannabidiol led to cannabinoid receptor 2 (CB2)-mediated reduction in cell viability and induction in apoptosis. Furthermore, cannabidiol treatment led to a significant decrease in tumor burden and an increase in apoptotic tumors in vivo. From a mechanistic standpoint, cannabidiol exposure resulted in activation of caspase-8, caspase-9, and caspase-3, cleavage of poly(ADPribose) polymerase, and a decrease in full-length Bid, suggesting possible cross-talk between the intrinsic and extrinsic apoptotic pathways.
In the current study, we tested the central hypothesis that exposure to Δ-9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component in marijuana, can lead to enhanced growth of tumors that express low to undetectable levels of cannabinoid receptors by specifically suppressing the antitumor immune response. We demonstrated that the human breast cancer cell lines MCF-7 and MDA-MB-231 and the mouse mammary carcinoma 4T1 express low to undetectable levels of cannabinoid receptors, CB1 and CB2, and that these cells are resistant to Δ9-THC-induced cytotoxicity. Furthermore, exposure of mice to Δ9-THC led to significantly elevated 4T1 tumor growth and metastasis due to inhibition of the specific antitumor immune response in vivo. The suppression of the antitumor immune response was mediated primarily through CB2 as opposed to CB1. Furthermore, exposure to Δ9-THC led to increased production of IL-4 and IL-10, suggesting that Δ9-THC exposure may specifically suppress the cell-mediated Th1 response by enhancing Th2-associated cytokines. This possibility was further supported by microarray data demonstrating the up-regulation of a number of Th2-related genes and the down-regulation of a number of Th1-related genes following exposure to Δ9-THC. Finally, injection of anti-IL-4 and anti-IL-10 mAbs led to a partial reversal of the Δ9-THC-induced suppression of the immune response to 4T1. Such findings suggest that marijuana exposure either recreationally or medicinally may increase the susceptibility to and/or incidence of breast cancer as well as other cancers that do not express cannabinoid receptors and are resistant to Δ9-THC-induced apoptosis.
Inflammatory bowel disease is a chronic, relapsing, and tissuedestructive disease. Resveratrol (3,4,5-trihydroxy-trans-stilbene), a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects, is recognized as one of the most promising natural molecules in the prevention and treatment of chronic inflammatory disease and autoimmune disorders. In the present study, we investigated the effect of resveratrol on dextran sodium sulfate (DSS)-induced colitis in mice and found that it effectively attenuated overall clinical scores as well as various pathological markers of colitis. Resveratrol reversed the colitis-associated decrease in body weight and increased levels of serum amyloid A, tumor necrosis factor-␣, interleukin (IL-6), and IL-1. After resveratrol treatment, the percentage of CD4 ϩ T cells in mesenteric lymph nodes (MLN) of colitis mice was restored to normal levels, and there was a decrease in these cells in the colon lamina propria (LP). Likewise, the percentages of macrophages in MLN and the LP of mice with colitis were decreased after resveratrol treatment. Resveratrol also suppressed cyclooxygenase-2 (COX-2) expression induced in DSS-exposed mice. Colitis was associated with a decrease in silent mating type information regulation-1 (SIRT1) gene expression and an increase in p-inhibitory B expression and nuclear transcription factor-B (NF-B) activation. Resveratrol treatment of mice with colitis significantly reversed these changes. This study demonstrates for the first time that SIRT1 is involved in colitis, functioning as an inverse regulator of NF-B activation and inflammation. Furthermore, our results indicate that resveratrol may protect against colitis through up-regulation of SIRT1 in immune cells in the colon.
Resveratrol is a naturally occurring polyphenol that exhibits pleiotropic health beneficial effects, including anti-inflammatory, cardio-protective, and cancer-protective activities. It is recognized as one of the more promising natural molecules in the prevention and treatment of chronic inflammatory and autoimmune disorders. Ulcerative colitis is an idiopathic, chronic inflammatory disease of the colon associated with a high colon cancer risk. Here, we used a dextran sulfate sodium (DSS) mouse model of colitis, which resembles human ulcerative colitis pathology. Resveratrol mixed in food ameliorates DSS-induced colitis in mice in a dose-dependent manner. Resveratrol significantly improves inflammation score, downregulates the percentage of neutrophils in the mesenteric lymph nodes and lamina propria, and modulates CD3 + T cells that express tumor necrosis factor-α and IFN-γ. Markers of inflammation and inflammatory stress (p53 and p53-phospho-Ser 15) are also downregulated by resveratrol. Because chronic colitis drives colon cancer risk, we carried out experiments to determine the chemopreventive properties of resveratrol. Tumor incidence is reduced from 80% in mice treated with azoxymethane (AOM) + DSS to 20% in mice treated with AOM + DSS + resveratrol (300 ppm). Tumor multiplicity also decreased with resveratrol treatment. AOM + DSS-treated mice had 2.4 ± 0.7 tumors per animal compared with AOM + DSS + 300 ppm resveratrol, which had 0.2 ± 0.13 tumors per animal. The current study indicates that resveratrol is a useful, nontoxic complementary and alternative strategy to abate colitis and potentially colon cancer associated with colitis. Cancer Prev Res; 3(4); 549-59. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.