Inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) is the most prominent and evolutionarily conserved endoplasmic reticulum (ER) membrane protein. This transduces the signal of misfolded protein accumulation in the ER, named as ER stress, to the nucleus as “unfolded protein response (UPR).” The ER stress-mediated IRE1α signaling pathway arbitrates the yin and yang of cell life. IRE1α has been implicated in several physiological as well as pathological conditions, including immune disorders. Autoimmune diseases are caused by abnormal immune responses that develop due to genetic mutations and several environmental factors, including infections and chemicals. These factors dysregulate the cell immune reactions, such as cytokine secretion, antigen presentation, and autoantigen generation. However, the mechanisms involved, in which these factors induce the onset of autoimmune diseases, are remaining unknown. Considering that these environmental factors also induce the UPR, which is expected to have significant role in secretory cells and immune cells. The role of the major UPR molecule, IRE1α, in causing immune responses is well identified, but its role in inducing autoimmunity and the pathogenesis of autoimmune diseases has not been clearly elucidated. Hence, a better understanding of the role of IRE1α and its regulatory mechanisms in causing autoimmune diseases could help to identify and develop the appropriate therapeutic strategies. In this review, we mainly center the discussion on the molecular mechanisms of IRE1α in the pathophysiology of autoimmune diseases.
Protein–RNA interactions are essential for many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the protein surface shape (dented, intermediate or protruded) and the RNA base pairing properties (paired or unpaired nucleotides) at the interfaces of 91 protein–RNA complexes derived from the Protein Data Bank. Dented protein surfaces prefer unpaired nucleotides to paired ones at the interface, and hydrogen bonds frequently occur between the protein backbone and RNA bases. In contrast, protruded protein surfaces do not show such a preference, rather, electrostatic interactions initiate the formation of hydrogen bonds between positively charged amino acids and RNA phosphate groups. Interestingly, in many protein–RNA complexes that interact via an RNA loop, an aspartic acid is favored at the interface. Moreover, in most of these complexes, nucleotide bases in the RNA loop are flipped out and form hydrogen bonds with the protein, which suggests that aspartic acid is important for RNA loop recognition through a base-flipping process. This study provides fundamental insights into the role of the shape of the protein surface and RNA secondary structures in mediating protein–RNA interactions.
Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations.
A flow-through immunoassay (FTA), an improved version of immunodot, was developed using a nitrocellulose membrane baked onto adsorbent pads enclosed in a plastic cassette to detect white spot syndrome virus (WSSV) in shrimp. Sharp purple dots developed with WSSV against the white background of the nitrocellulose membrane. The detection limits of WSSV by the FTA and immunodot were 0.312 and 1.2 μg mL(-1) crude WSSV protein, respectively. The FTA could be completed in 8-10 min compared with 90 min for immunodot. The FTA was 100 times more sensitive than 1-step polymerase chain reaction (PCR) and in between that of the 1- and 2-step PCR protocol recommended by the Office of International Epizootics (OIE). In experimental, orally infected shrimp post-larvae, WSSV was first detected 14, 16 and 18 h post-infection (hpi) by FTA, immunodot and one-step PCR, respectively. The FTA detected WSSV 2 and 4 h earlier than immunodot and one-step PCR, respectively. The FTA was more sensitive (25/27) than one-step PCR (23/27) and immunodot (23/27) for the detection of WSSV from white spot disease outbreak ponds. The reagent components of the FTA were stable giving expected results for 6 m at 4-8 °C. The FTA is available as a rapid test kit called 'RapiDot' for the early detection of WSSV under field conditions.
Keywords: poikiloderma with neutropenia, RNA disease, splicing, U6 biogenesis, zebrafish Abbreviations: CHT, caudal haematopoietic tissue; CRISPR, clustered regularly interspaced short palindromic repeats; GFP, green fluorescent protein; hpf, hours post fertilization; MO, morpholino antisense oligo; MPN1, mutated in poikiloderma with neutropenia; PN; poikiloderma with neutropenia; snRNPs; small nuclear ribonucleoproteins; sqRT-PCR; semi-quantitative reverse transcription and polymerase chain reaction; USB1, U Six Biogenesis 1Poikiloderma with neutropenia (PN) is a rare inherited disorder characterized by poikiloderma, facial dysmorphism, pachyonychia, short stature and neutropenia. The molecular testing of PN patients has identified mutations in the C16orf57 gene, which encodes a protein referred to as USB1 (U Six Biogenesis 1). In this study, we developed a zebrafish model of PN by the microinjection of morpholino antisense oligos to suppress usb1 gene function. Severe morphological defects, including a bent tail, thin yolk extension and reduced body length, were predominant in the Usb1-suppressed embryos (morphants). We also observed significantly decreased number of neutrophils in the morphants by Sudan Black staining. Interestingly, the splicing of genes involved in neutrophil differentiation and development, such as mpx, ncf1, ela3l and npsn, was aberrant in the morphants. However, the splicing of haematopoietic precursors and erythroid-specific genes was unaltered. Importantly, the neutrophil defects were almost completely rescued by co-injection of ela3l mRNA, the most markedly affected gene in the morphants. Our study demonstrated a possible role of USB1 in modulating the tissue-specific gene splicing that eventually leads to the impaired development of neutrophils. This zebrafish model could serve as a valuable tool to investigate the causative role of USB1 in PN pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.