Background Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness.Methods In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FindingsOf 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1•84, 95% CI 1•53-2•21), male sex (1•63, 1•07-2•48), smoking status (former smoker vs never smoked: 1•60, 1•03-2•47), number of comorbidities (two vs none: 4•50, 1•33-15•28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3•89, 2•11-7•18), active cancer (progressing vs remission: 5•20, 2•77-9•77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2•93, 1•79-4•79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0•24, 0•07-0•84) or the US-Midwest (0•50, 0•28-0•90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. Interpretation Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments.
Background Patients with cancer may be at high risk of adverse outcomes from SARS-CoV-2 infection. We analyzed a cohort of patients with cancer and COVID-19 reported to the COVID-19 and Cancer Consortium (CCC19) to identify prognostic clinical factors, including laboratory measurements and anti-cancer therapies. Patients and Methods Patients with active or historical cancer and a laboratory-confirmed SARS-CoV-2 diagnosis recorded between March 17-November 18, 2020 were included. The primary outcome was COVID-19 severity measured on an ordinal scale (uncomplicated, hospitalized, admitted to intensive care unit, mechanically ventilated, died within 30 days). Multivariable regression models included demographics, cancer status, anti-cancer therapy and timing, COVID-19-directed therapies, and laboratory measurements (among hospitalized patients). Results 4,966 patients were included (median age 66 years, 51% female, 50% non-Hispanic white); 2,872 (58%) were hospitalized and 695 (14%) died; 61% had cancer that was present, diagnosed, or treated within the year prior to COVID-19 diagnosis. Older age, male sex, obesity, cardiovascular and pulmonary comorbidities, renal disease, diabetes mellitus, non-Hispanic Black race, Hispanic ethnicity, worse ECOG performance status, recent cytotoxic chemotherapy, and hematologic malignancy were associated with higher COVID-19 severity. Among hospitalized patients, low or high absolute lymphocyte count, high absolute neutrophil count, low platelet count, abnormal creatinine, troponin, LDH, and CRP were associated with higher COVID-19 severity. Patients diagnosed early in the COVID-19 pandemic (January-April 2020) had worse outcomes than those diagnosed later. Specific anti-cancer therapies (e.g. R-CHOP, platinum combined with etoposide, and DNA methyltransferase inhibitors) were associated with high 30-day all-cause mortality. Conclusions Clinical factors (e.g. older age, hematological malignancy, recent chemotherapy) and laboratory measurements were associated with poor outcomes among patients with cancer and COVID-19. Although further studies are needed, caution may be required in utilizing particular anti-cancer therapies.
IMPORTANCE COVID-19 is a life-threatening illness for many patients. Prior studies have established hematologic cancers as a risk factor associated with particularly poor outcomes from COVID-19. To our knowledge, no studies have established a beneficial role for anti-COVID-19 interventions in this at-risk population. Convalescent plasma therapy may benefit immunocompromised individuals with COVID-19, including those with hematologic cancers.OBJECTIVE To evaluate the association of convalescent plasma treatment with 30-day mortality in hospitalized adults with hematologic cancers and COVID-19 from a multi-institutional cohort. DESIGN, SETTING, AND PARTICIPANTSThis retrospective cohort study using data from the COVID-19 and Cancer Consortium registry with propensity score matching evaluated patients with hematologic cancers who were hospitalized for COVID-19. Data were collected between
Histiocytic sarcoma (HS) is an extremely rare non-Langerhans cell disorder with an aggressive course and limited treatment options. Recent advances in molecular/genetic sequencing have suggested a common clonal origin between various hematolymphoid disorders and cases of secondary HS. Deriving conclusions from previously reported cases of HS arising secondarily to certain hematolymphoid disorders, here we have tried to provide insight into the mechanisms influencing this evolution. We also discuss a clinical case of a 72-year-old man with a diagnosis of chronic myeloid leukemia (CML), presenting subsequently with a heterogeneous liver mass positive with a diagnosis of HS. The liver mass showed a retained BCR-ABL1 translocation suggesting clonality between the CML and HS. As seen in our case and other reported cases of HS derived secondarily, the concurrent expression of immunoglobulin heavy (IGH)-/lightchain rearrangements or cytogenetic markers common to the primary malignancy suggests an evolutionary mechanism involving lineage switching that could potentially be influenced by genetic or epigenetic cues which may occur at the level of a progenitor or the malignant cell itself. Clinical caseA 72-year-old male was brought to the emergency room with a one-month history of progressively worsening bilateral lower extremity swelling, more than 10 lbs. of weight loss, lack of appetite, and rapidly declining performance status. His past medical history was notable for CML, which was diagnosed 30 months prior to presentation (Fig. 1). The patient was treated on a protocol with imatinib (400 mg daily) and demonstrated a complete molecular response to tyrosine kinase inhibitor (TKI) therapy. Focused physical examination demonstrated an emaciated male in mild distress from abdominal pain, right upper quadrant tenderness on deep palpation, and abdominal distension without any signs of an acute abdomen.His peripheral blood smear revealed normochromic, normocytic anemia with hemoglobin of 7.6 g/dL (normal range, 12.5-16.3 g/dL), a white blood count of 7 730/lL (normal range, 3 600-11 200/lL), a red blood cell count of 2.78 M/lL (normal range 4.06-5.63 M/lL), and a platelet count of 114 000/lL (normal range, 159 000-386 000/lL). Serum iron was low (21 lg/dL) with a low TIBC (216 lg/dL), which was attributed to anemia of chronic disease. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed the absence of the BCR/ABL transcript in the peripheral blood.Computed tomography scan of the chest and abdomen revealed a large, complex, heterogeneous, hypodense mass involving nearly all of the caudate and left lobes of the liver. These lesions were not present in the previous examination carried out 1 year before.Biopsy of the liver mass revealed diffuse infiltration of large and irregular pleomorphic cells with lobulated nuclei with some binucleated and trinucleated cells containing
For patients with solid tumors, the tolerance of surrounding tissues often limits the dose of radiation that can be delivered. Thus, agents that preferentially increase the cytotoxic effects of radiation toward tumor cells would significantly alter the therapeutic ratio and improve patient survival. Using a highthroughput, unbiased screening approach, we have identified 4 ¶-bromo-3 ¶-nitropropiophenone (NS-123) as a radiosensitizer of human glioma cells in vitro and in vivo. NS-123 radiosensitized U251 glioma cells in a dose-dependent and timedependent manner, with dose enhancement ratios ranging from 1.3 to 2.0. HT-29 colorectal carcinoma and A549 lung adenocarcinoma cells were also radiosensitized by NS-123 in vitro, whereas NS-123 did not increase the radiation sensitivity of normal human astrocytes or developmental abnormalities or lethality of irradiated Zebrafish embryos. In a novel xenograft model of U251 cells implanted into Zebrafish embryos, NS-123 enhanced the tumor growth-inhibitory effects of ionizing radiation (IR) with no apparent effect on embryo development. Similar results were obtained using a mouse tumor xenograft model in which NS-123 sensitized U251 tumors to IR while exhibiting no overt toxicity. In vitro pretreatment with NS-123 resulted in accumulation of unrepaired IR-induced DNA strand breaks and prolonged phosphorylation of the surrogate markers of DNA damage H2AX, ataxia telangiectasia mutated protein, DNA-dependent protein kinase, and CHK2 after IR, suggesting that NS-123 inhibits a critical step in the DNA repair pathway. These results show the potential of this cell-based, high-throughput screening method to identify novel radiosensitizers and suggest that NS-123 and similar nitrophenol compounds may be effective in antiglioma modalities. [Cancer Res 2007; 67(18):8791-9]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.