Protein deficiency is the most crucial factor that affects physical growth and development and that increases morbidity and mortality especially in developing countries. Efforts have been made to improve protein quality and quantity in crop plants but with limited success. Here, we report the development of transgenic potatoes with enhanced nutritive value by tuber-specific expression of a seed protein, AmA1 (Amaranth Albumin 1), in seven genotypic backgrounds suitable for cultivation in different agro-climatic regions. Analyses of the transgenic tubers revealed up to 60% increase in total protein content. In addition, the concentrations of several essential amino acids were increased significantly in transgenic tubers, which are otherwise limited in potato. Moreover, the transgenics also exhibited enhanced photosynthetic activity with a concomitant increase in total biomass. These results are striking because this genetic manipulation also resulted in a moderate increase in tuber yield. The comparative protein profiling suggests that the proteome rebalancing might cause increased protein content in transgenic tubers. Furthermore, the data on field performance and safety evaluation indicate that the transgenic potatoes are suitable for commercial cultivation. In vitro and in vivo studies on experimental animals demonstrate that the transgenic tubers are also safe for human consumption. Altogether, these results emphasize that the expression of AmA1 is a potential strategy for the nutritional improvement of food crops.allergenecity | essential amino acids | nutritional health
The modern cultivated potato was first recorded in Europe in 1562, but its area(s) of exportation has long been in dispute. Two competing hypotheses have proposed an "Andean" area (somewhere from upland Venezuela to northern Argentina) or a lowland south central "Chilean" area. Potato landraces from these two areas can be distinguished, although sometimes with difficulty, by (1) cytoplasmic sterility factors, (2) morphological traits, (3) daylength adaptation, (4) microsatellite markers, and (5) co-evolved chloroplast (cp) and mitochondria (mt) DNA. The Chilean introduction hypothesis originally was proposed because of similarities among Chilean landraces and modern "European" cultivars with respect to traits 2 and 3. Alternatively, the Andean introduction hypothesis suggests that (1) traits 2 and 3 of European potato evolved rapidly, in parallel, from Andean landraces to a Chilean type through selection following import to Europe, and (2) the worldwide late blight epidemics beginning in 1845 in the United Kingdom displaced most existing European cultivars and the potato was subsequently improved by importations of Chilean landraces. We reassess these two competing hypotheses with nuclear microsatellite and cpDNA analyses of (1) 32 Indian cultivars, some of which are thought to preserve putatively remnant populations of Andean landraces, (2) 12 Andean landraces, and (3) five Chilean landraces. Our microsatellite results cluster all Indian cultivars, including putatively remnant Andean landrace populations, with the Chilean landraces, and none with the "old Andigenum" landraces. Some of these Indian landraces, however, lack the cpDNA typical of Chilean landraces and advanced cultivars, indicating they likely are hybrids of Andean landraces with Chilean clones or more advanced cultivars. These results lead us to reexamine the hypothesis that early introductions of potato to Europe were solely from the Andes.
Over the past decade, Pfizer has focused efforts to improve its research and development (R&D) productivity. By the end of 2020, Pfizer had achieved an industry-leading clinical success rate of 21%, a tenfold increase from 2% in 2010 and well above the industry benchmark of ∼11%. The company had also maintained the quality of innovation, because 75% of its approvals between 2016 and 2020 had at least one expedited regulatory designation (e.g., Breakthrough Therapy). Pfizer’s Signs of Clinical Activity (SOCA) paradigm enabled better decision-making and, along with other drivers (biology and modality), contributed to this productivity improvement. These laid a strong foundation for the rapid and effective development of the Coronavirus 2019 (COVID-19) vaccine with BioNTech, as well as the antiviral candidate Paxlovid™, under the company’s ‘lightspeed’ paradigm.
Salt sensitivities of six potato cultivars using six levels of sodium chloride (0.0 to 0.25M) were studied in a greenhouse. Responses of these cultivars were also determined in tissue culture by studying rooting of stem segments, increase in length of cultured roots and inhibition of growth of cell suspension cultures using similar salt concentrations. Responses of cultured stem segments and cell suspensions differed from those expressed by whole plants. A close similarity was observed between the salt stress response of whole plants and of cultured roots. The latter technique may provide a preliminary screening method for assessing salt tolerance in potato genotypes.
SummaryThe effect of inorganic nitrogen nutrition on the induction and development of microtubers by cytokinin-induced tuberization was studied in four potato genotypes belonging to different maturity groups. The objective of this study was to investigate whether a reduction in total nitrogen level in the Murashige & Skoog medium would improve cytokinin-induced tuberization rate. The effect of three levels of total nitrogen (15, 30 and 45 meq) on tuberization was studied at constant (20 meq K) and varying potassium levels approximating to 5,.10 and 15 meq. Reducing the total nitrogen supply increased the number but decreased the size of microtubers. The total availability of potassium in the medium influenced the effect of reduced nitrogen level on the rate of assimilate partitioning (harvest index) during cytokinin-induced microtuberization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.