We used electron microscopy to measure the effects of cytochalasins, phalloidin, and pH on the rates of elongation at the barbed and pointed ends of actin filaments. In the case of the cytochalasins, we compared the effects on ATP- and ADP-actin monomers. Micromolar concentrations of either cytochalasin B (CB) or cytochalasin D (CD) inhibit elongation at both ends of the filament, about 95% at the barbed end and 50% at the pointed end, so that the two ends contribute about equally to the rate of growth. Half-maximal inhibition of elongation at the barbed end is at 0.1 microM CB and 0.02 microM CD for ATP-actin and at 0.1 microM CD for ADP-actin. At the pointed end, CD inhibits elongation by ATP-actin and ADP-actin about equally. At high (2 microM) concentrations, the cytochalasins reduce the association and dissociation rate constants in parallel for both ADP- and ATP-actin, so their effects on the critical concentrations are minimal. These observations confirm and extend those of Bonder and Mooseker [Bonder, E. M., & Mooseker, M. S. (1986) J. Cell Biol. 102, 282-288]. The dependence of the elongation rate on the concentration of both cytochalasin and actin can be explained quantitatively by a mechanism that includes the effects of cytochalasin binding to actin monomers [Godette, D. W., & Frieden, C. (1986) J. Biol. Chem. 261, 5974-5980] and a partial cap of the barbed end of the filament by the complex of ADP-actin and cytochalasin.(ABSTRACT TRUNCATED AT 250 WORDS)
Purpose
Glioblastoma multiforme (GBM) remains highly incurable, with frequent recurrences after standard therapies of maximal surgical resection, radiation, and chemotherapy. To address the need for new treatments, we have undertaken a chimeric antigen receptor (CAR) “designer T cell” (dTc) immunother-apeutic strategy by exploiting interleukin (IL)13 receptor α-2 (IL13Rα2) as a GBM-selective target.
Experimental Design
We tested a second-generation IL13 “zetakine” CAR composed of a mutated IL13 extracellular domain linked to intracellular signaling elements of the CD28 costimulatory molecule and CD3ζ. The aim of the mutation (IL13.E13K.R109K) was to enhance selectivity of the CAR for recognition and killing of IL13Rα2+ GBMs while sparing normal cells bearing the composite IL13Ra1/IL4Ra receptor.
Results
Our aim was partially realized with improved recognition of tumor and reduced but persisting activity against normal tissue IL13Rα1+ cells by the IL13.E13K.R109K CAR. We show that these IL13 dTcs were efficient in killing IL13Rα2+ glioma cell targets with abundant secretion of cytokines IL2 and IFNγ, and they displayed enhanced tumor-induced expansion versus control unmodified T cells in vitro. In an in vivo test with a human glioma xenograft model, single intracranial injections of IL13 dTc into tumor sites resulted in marked increases in animal survivals.
Conclusions
These data raise the possibility of immune targeting of diffusely invasive GBM cells either via dTc infusion into resection cavities to prevent GBM recurrence or via direct stereotactic injection of dTcs to suppress inoperable or recurrent tumors. Systemic administration of these IL13 dTc could be complicated by reaction against normal tissues expressing IL13Ra1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.