In the present work, degradation of reactive orange 4 dye (RO4) has been investigated using hydrodynamic cavitation (HC) and in combination with other AOP's. In the hybrid techniques, combination of hydrodynamic cavitation and other oxidizing agents such as H2O2 and ozone have been used to get the enhanced degradation efficiency through HC device. The hydrodynamic cavitation was first optimized in terms of different operating parameters such as operating inlet pressure, cavitation number and pH of the operating medium to get the maximum degradation of RO4. Following the optimization of HC parameters, the degradation of RO4 was carried out using the combination of HC with H2O2 and ozone. It has been found that the efficiency of the HC can be improved significantly by combining it with H2O2 and ozone. The mineralization rate of RO4 increases considerably with 14.67% mineralization taking place using HC alone increases to 31.90% by combining it with H2O2 and further increases to 76.25% through the combination of HC and ozone. The synergetic coefficient of greater than one for the hybrid processes of HC+H2O2 and HC+Ozone has suggested that the combination of HC with other oxidizing agents is better than the individual processes for the degradation of dye effluent containing RO4. The combination of HC with ozone proves to be the most energy efficient method for the degradation of RO4 as compared to HC alone and the hybrid process of HC and H2O2.
Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production. The production of ABE was further accomplished via acid hydrolysis, detoxification, and fermentation process. Maximum total sugar release obtained by using acid hydrolysis was 97g/L with 95-97% and 10-50% removal of phenolics and acetic acid, respectively during detoxification process. The maximum ABE titer obtained was 5.23g/L with 55.6% substrate consumption when samples dried at 120°C were used as a substrate (after detoxification).
Particle segregation and intermixing have been studied in 50 mm i.d. and 1.2 m long solid-liquid fluidized bed (SLFB). An ion-exchange resin was used as a solid phase in five size ranges with average particle sizes (dry basis) of 427, 500, 605, 725, and 855 µm. Expansion characteristics of beds were investigated separately for all the particle sizes. The expansion characteristics were also investigated using 2, 3, 4, and 5 sizes having all the combinations among 427, 500, 605, 725, and 855 µm. In all cases, the concentration profiles of the individual sizes were measured along the bed height. The segregation velocity of dense and light particle was predicted and compared with experimental results for binary mixtures. Criteria have been developed for segregation/intermixing in laminar (Re ∞ < 0.1), transition (0.1 < Re ∞ < 500), and turbulent (Re ∞ > 500) regimes for binary particle systems. The solid dispersion coefficient has also been evaluated for each particle size present in the mixture of particles of different sizes at given operating conditions.
PDF/A is an ISO-standardized version of the Portable Document Format (PDF) specialized for the digital preservation of electronic documents. The extension in the file name is pdf. PDF/A differs from "normal" PDF in that features ill-suited for long-term archiving are omitted. PDF/A embeds all fonts used in the document within the PDF file, so that the user of your file will not have to have the same fonts that you used to create the file installed on their computer in order to read it. Recommended versions are PDF/A-1a, -1b, -2a or -2b.PDF/A conversion -how to convert files to the PDF/A -format using different tools Microsoft Word (Office) and PDF-Xchange pro/Editor are installed on all Windows workstations managed by Aalto IT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.