Observed changes in DOM characteristics and THMFP occurrence in polluted tropical raw water and along conventional drinking water treatment processes over the dry and rainy seasons. Presence of protein compounds indicating raw water pollution. Influences of the ratio of tryptophan to humic compounds on the performance of drinking water treatment over two different seasons. Relevant parameters that can be used in monitoring the quality of both raw and treated water.
A hallmark of Alzheimer’s disease is the aggregation of insoluble amyloid-beta plaques and tau protein neurofibrillary tangles. A key histopathological observation is that tau protein aggregates follow a structured progression pattern through the brain. Mathematical network models of prion-like propagation have the ability to capture such patterns, but a number of factors impact the observed staging result, thus introducing questions regarding model selection. Here, we introduce a novel approach, based on braid diagrams, for studying the structured progression of a marker evolving on a network. We apply this approach to a six-stage ‘Braak pattern’ of tau proteins, in Alzheimer’s disease, motivated by a recent observation that seed-competent tau precedes tau aggregation. We show that the different modeling choices, from the model parameters to the connectome resolution, play a significant role in the landscape of observable staging patterns. Our approach provides a systematic way to approach model selection for network propagation of neurodegenerative diseases that ensures both reproducibility and optimal parameter fitting.
Many physical, epidemiological, or physiological dynamical processes on networks support front-like propagation, where an initial localized perturbation grows and systematically invades all nodes in the network. A key question is then to extract estimates for the dynamics. In particular, if a single node is seeded at a small concentration, when will other nodes reach the same initial concentration? Here, motivated by the study of toxic protein propagation in neurodegenerative diseases, we present and compare three different estimates for the arrival time in order of increasing analytical complexity: the linear arrival time, obtained by linearizing the underlying system; the Lambert time, obtained by considering the interaction of two nodes; and the nonlinear arrival time, obtained by asymptotic techniques. We use the classic Fisher-Kolmogorov-Petrovsky-Piskunov equation as a paradigm for the dynamics and show that each method provides different insight and time estimates. Further, we show that the nonlinear asymptotic method also gives an approximate solution valid in the entire domain and the correct ordering of arrival regions over large regions of parameters and initial conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.