Emotional deception and emotional attachment are regarded as ethical concerns in human-robot interaction. Considering these concerns is essential, particularly as little is known about longitudinal effects of interactions with social robots. We ran a longitudinal user study with older adults in two retirement villages, where people interacted with a robot in a didactic setting for eight sessions over a period of 4 weeks. The robot would show either non-emotive or emotive behavior during these interactions in order to investigate emotional deception. Questionnaires were given to investigate participants' acceptance of the robot, perception of the social interactions with the robot and attachment to the robot. Results show that the robot's behavior did not seem to influence participants' acceptance of the robot, perception of the interaction or attachment to the robot. Time did not appear to influence participants' level of attachment to the robot, which ranged from low to medium. The perceived ease of using the robot significantly increased over time. These findings indicate that a robot showing emotions-and perhaps resulting in users being deceived-in a didactic setting may not by default negatively influence participants' acceptance and perception of the robot, and that older adults may not become distressed if the robot would break or be taken away from them, as attachment to the robot in this didactic setting was not high. However, more research is required as there may be other factors influencing these ethical concerns, and support through other measurements than questionnaires is required to be able to draw conclusions regarding these concerns.
Assistive robots are emerging to address a social need due to changing demographic trends such as an ageing population. The main emphasis is to offer independence to those in need and to fill a potential labour gap in response to the increasing demand for caregiving. This paper presents work undertaken as part of a dressing task using a compliant robotic arm on a mannequin. Several strategies are explored on how to undertake this task with minimal complexity and a mix of sensors. A Vicon tracking system is used to determine the arm position of the mannequin for trajectory planning by means of waypoints. Methods of failure detection were explored through torque feedback and sensor tag data. A fixed vocabulary of recognised speech commands was implemented allowing the user to successfully correct detected dressing errors. This work indicates that low cost sensors and simple HRI strategies, without complex learning algorithms, could be used successfully in a robot assisted dressing task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.