Safety applications designed for Vehicular Ad Hoc Networks (VANETs) can be compromised by participating vehicles transmitting false or inaccurate information. Design of mechanisms that detect such misbehaving nodes is an important problem in VANETs. In this paper, we investigate the use of correlated information, called "secondary alerts", generated in response to another alert, called as the "primary alert" to verify the truth or falsity of the primary alert received by a vehicle. We first propose a framework to model how such correlated secondary information observed from more than one source can be integrated to generate a "degree of belief" for the primary alert. We then show an instantiation of the model proposed for the specific case of Post-Crash Notification as the primary alert and Slow/Stopped Vehicle Advisory as the secondary alerts. Finally, we present the design and evaluation of a misbehavior detection scheme (MDS) for PCN application using such correlated information to illustrate that such information can be used efficiently for MDS design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.