Peptide nucleic acids (PNAs) are DNA analogs that bind with high affinity to DNA and RNA in a sequence-specific manner but have poor cell permeability, limiting use as therapeutic agents. The work described here is motivated by recent reports of efficient gene silencing specifically in hepatocytes by small interfering RNAs conjugated to triantennary N-acetyl galactosamine (GalNAc), the ligand recognized by the asialoglycoprotein receptor (ASGPR). PNAs conjugated to either triantennary GalNAc at the N-terminus (the branched architecture) or monomeric GalNAc moieties anchored at C γ of three consecutive PNA monomers of N-(2-aminoethyl)glycine (aeg) scaffolds (the sequential architecture) were synthesized on the solid phase. These formed duplexes with complementary DNA and RNA as shown by UV and circular dichroism spectroscopy. The fluorescently labeled analogs of GalNAc-conjugated PNAs were internalized by HepG2 cells that express the ASGPR but were not taken up by HEK-293 cells that lack this receptor. The sequential conjugate was internalized about 13-fold more efficiently than the branched conjugate into HepG2 cells, as demonstrated by confocal microscopy. The results presented here highlight the potential significance of the architecture of GalNAc conjugation for efficient uptake by target liver cells and indicate that GalNAc-conjugated PNAs have possible therapeutic applications.
Peptide nucleic acids (PNAs) are linear equivalents of DNA with a neutral acyclic polyamide backbone that has nucleobases attached via tert-amide link on repeating units of aminoethylglycine. They bind complementary DNA or RNA with sequence specificity to form hybrids that are more stable than the corresponding DNA/RNA self-duplexes. A new type of PNA termed bimodal PNA [Cγ(S/R)-bm-PNA] is designed to have a second nucleobase attached via amide spacer to a side chain at Cγ on the repeating aeg units of PNA oligomer. Cγ-bimodal PNA oligomers that have two nucleobases per aeg unit are demonstrated to concurrently bind two different complementary DNAs, to form duplexes from both tert-amide side and Cγ side. In such PNA:DNA ternary complexes, the two duplexes share a common PNA backbone. The ternary DNA 1:Cγ(S/R)-bm-PNA:DNA 2 complexes exhibit better thermal stability than the isolated duplexes, and the Cγ(S)-bm-PNA duplexes are more stable than Cγ(R)-bm-PNA duplexes. Bimodal PNAs are first examples of PNA analogues that can form DNA2:PNA:DNA1 double duplexes via recognition through natural bases. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-level assemblies.
Peptide nucleic acids (PNAs) are analogues of DNA with a neutral acyclic polyamide backbone containing nucleobases attached through a t-amide link on repeating units of aminoethylglycine (aeg). They bind to complementary DNA or RNA in a sequencespecific manner to form duplexes with higher stablity than DNA:DNA and DNA:RNA hybrids. We have recently explored a new type of PNA termed bimodal PNA (bm-PNA) designed with two nucleobases per aeg repeating unit of PNA oligomer and attached at Cα or Cγ of each aeg unit through a spacer sidechain. We demonstrated that Cγ-bimodal PNA oligomers with mixed nucleobase sequences bind concurrently two different complementary DNAs, forming double duplexes, one from each t-amide and Cγ face, sharing a common PNA backbone. In such bm-PNA:DNA ternary complexes, the two duplexes show higher thermal stability than individual duplexes. Herein, we show that Cγ(S/R)-bimodal PNAs with homothymines (T 8 ) on a t-amide face and homocytosine (C 6 ) on a Cγ-face form a conjoined pentameric complex consisting of a triplex (bm-PNA-T 8 ) 2 :dA 8 and two duplexes of bm-PNA-C 6 :dG 6 . The pentameric complex [dG 6 :Cγ(S/R)-bm-PNA:dA 8 :Cγ(S/R)-bm-PNA:dG 6 ] exhibits higher thermal stability than the individual triplex and duplex, with Cγ(S)-bm-PNA complexes being more stable than Cγ(R)-bm-PNA complexes. The conjoined duplexes of Cγ-bimodal PNAs can be used to generate novel higher-order assemblies with DNA and RNA. The Cγ(S/R)-bimodal PNAs are shown to enter MCF7 and NIH 3T3 cells and exhibit low toxicity to cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.