Exposure-response (ER) modelling (concentration-QTc analysis) is gaining as much acceptance as the traditional by-time analysis of the placebo-adjusted change from baseline in the QTc interval (ΔΔQTcF). It has been postulated that intensive ECG analysis and ER modelling during early-phase drug development could be a cost-effective approach of estimating QT liability of a new drug, in a small number of subjects.
EXPERIMENTAL APPROACHWe used a highly automated analysis of ECGs from 46 subjects from a crossover thorough QT/QTc study to detect ΔΔQTcF with moxifloxacin. Using these data, we also simulated (bootstrapped) 1000 datasets of a parallel study with eight subjects receiving moxifloxacin and eight others receiving placebo.
KEY RESULTSThe slope from the concentration-QTc analysis for moxifloxacin in 46 subjects was 4.12 ms of ΔΔQTcF per μg -1 mL -1 ; at mean C max of 2.95 μg·mL À1 , estimated ΔΔQTcF was 13.4 ms (90% confidence interval 11.3, 15.4 ms). In the 1000 simulated datasets, in 996 datasets, ER modelling showed that the upper bound of the 90% confidence interval for ΔΔQTcF at geometric mean C max exceeded 10 ms. In 895 of these 996 datasets, the slope of the ER relationship was statistically significantly positive. Thus, with a small sample size (eight subjects on active drug and eight on placebo), moxifloxacin-induced QTc prolongation was demonstrated using ER analysis with statistical power of >80%.
CONCLUSIONS AND IMPLICATIONSOur study adds to the growing body of data supporting intensive ECG collection and analysis in early-phase studies to estimate QT liability.
AbbreviationsICH, International Conference on Harmonization; LOQ, limit of quantitation; SAD, single ascending dose; TQT, thorough QT/QTc
Although fixed QT correction methods are typically used to adjust for the effect of heart rate on the QT interval in thorough QT/QTc studies, individual-specific QT correction (QTcI = QT/RR ) is advisable for drugs that increase the heart rate by >5 to 10 beats/minute (bpm). QTcI is traditionally derived using resting drug-free electrocardiograms (ECGs) collected at prespecified times. However, the resting heart rate range in healthy individuals is narrow, and extrapolation of inferences from these data to higher heart rates could be inappropriate. Accordingly, the QTcI derived from triplicate ECGs extracted at prespecified times (the traditional [T] method, yielding QTcIT) was compared with QTcIs obtained using ECGs with a wider heart rate range (alternative Holter [H] method, yielding QTcIH) from 24-hour Holter recordings from 40 healthy individuals selected from a central ECG laboratory database. For QTcIH, 10-second ECGs were extracted at stable heart rates in the ranges of 51-60, 61-70, 71-80, and 81-90 bpm (9 ECGs in each bin = 36 ECGs). An independent set of 40 ECGs with heart rates from 51 to 90 bpm was extracted from each individual to validate the accuracy of QTcI by the 2 methods. For the validation set, the QTcIH was a better QT correction method (slope of QTc vs heart rate closer to zero) than QTcIT. The mean difference between QTcIT and QTcIH increased from 3.1 milliseconds at 65 bpm to 10.0 milliseconds at 90 bpm (P < 0.01). The QTcIT exceeded QTcIH at heart rates > 60 bpm. Employment of the QTcIH may be more appropriate for studies involving drugs that increase heart rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.