Curiosity-driven learning is foundational to human cognition. By enabling humans to autonomously decide when and what to learn, curiosity has been argued to be crucial for self-organizing temporally extended learning curricula. However, the mechanisms driving people to set intrinsic goals, when they are free to explore multiple learning activities, are still poorly understood. Computational theories propose different heuristics, including competence measures (e.g., percent correct) and learning progress, that could be used as intrinsic utility functions to efficiently organize exploration. Such intrinsic utilities constitute computationally cheap but smart heuristics to prevent people from laboring in vain on unlearnable activities, while still motivating them to self-challenge on difficult learnable activities. Here, we provide empirical evidence for these ideas by means of a free-choice experimental paradigm and computational modeling. We show that while humans rely on competence information to avoid easy tasks, models that include a learning-progress component provide the best fit to task selection data. These results bridge the research in artificial and biological curiosity, reveal strategies that are used by humans but have not been considered in computational research, and introduce tools for probing how humans become intrinsically motivated to learn and acquire interests and skills on extended time scales.
Curiosity-driven learning is foundational to human cognition. By enabling humans to autonomously decide when and what to learn, curiosity has been argued to be crucial for self-organizing temporally extended learning curricula. However, the mechanisms driving people to set intrinsic goals, when they are free to explore multiple learning activities, are still poorly understood. Computational theories propose different heuristics, including competence measures (e.g. percent correct, or PC) and learning progress (LP), that could be used as intrinsic utility functions to efficiently organize exploration. Such intrinsic utilities constitute computationally cheap but smart heuristics to prevent people from laboring in vain on random activities, while still motivating them to self-challenge on difficult learnable activities. Here, we provide empirical evidence for these ideas by means of a novel experimental paradigm and computational modeling. We show that while humans rely on competence information to avoid easy tasks, models that include an LP component provide the best fit to task selection data. These results provide a new bridge between research on artificial and biological curiosity, reveal strategies that are used by humans but have not been considered in computational research, and provide new tools for probing how humans become intrinsically motivated to learn and acquire interests and skills on extended time scales.
The neurocomputational model described here proposes that two dimensions involved in computation of reward prediction errors i.e magnitude and time could be computed separately and later combined unlike traditional reinforcement learning models. The model is built on biological evidences and is able to reproduce various aspects of classical conditioning, namely, the progressive cancellation of the predicted reward, the predictive firing from conditioned stimuli, and delineation of early rewards by showing firing for sooner early rewards and not for early rewards that occur with a longer latency in accordance with biological data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.