Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.
Mango (Mangiferra indica L), guava (Psiduim guajava L.) slices and aonla (Emblica officinalis L) segments were osmo-dried under four different dying conditions viz., cabinet drier (CD), vacuum oven drier (VOD), low temperature drier (LTD) and solar drier (SD) to evaluate the best drying condition for the fruits. It was found that vacuum oven drying was superior to other mode of drying as it holds maximum nutrients like acidity, ascorbic acid, sugar and water removal and moisture ratio of products. It was found through regression analysis that drying ratio and rehydration ratio was also superior in vacuum drying followed by cabinet drying. In addition, descriptive analysis on sensory score was also found best with vacuum drying while the Non-enzymatic browning (NEB), which is undesirable character on dried product, was more with solar drier.
The phosphorous-containing porous organic polymer is a trending material for the synthesis of heterogeneous catalysts. Decades of investigations have established phosphines as versatile ligands in homogeneous catalysis. Recently, phosphine-based heterogeneous...
Photosynthesis, crop health and dry matter partitioning are among the most important factors influencing crop productivity and quality. Identifying variation in these parameters may help discover the plausible causes for crop productivity differences under various management practices and cropping systems. Thus, a 2-year (2019–2020) study was undertaken to investigate how far the integrated crop management (ICM) modules and cropping systems affect maize physiology, photosynthetic characteristics, crop vigour and productivity in a holistic manner. The treatments included nine main-plot ICM treatments [ICM1 to ICM4 – conventional tillage (CT)-based; ICM5 to ICM8 – conservation agriculture (CA)-based; ICM9 – organic agriculture (OA)-based] and two cropping systems, viz., maize–wheat and maize + blackgram–wheat in subplots. The CA-based ICM module, ICM7 resulted in significant (p < 0.05) improvements in the physiological parameters, viz., photosynthetic rate (42.56 μ mol CO2 m–2 sec–1), transpiration rate (9.88 m mol H2O m–2 sec–1) and net assimilation rate (NAR) (2.81 mg cm–2 day–1), crop vigour [NDVI (0.78), chlorophyll content (53.0)], dry matter partitioning toward grain and finally increased maize crop productivity (6.66 t ha–1) by 13.4–14.2 and 27.3–28.0% over CT- and OA-based modules. For maize equivalent grain yield (MEGY), the ICM modules followed the trend as ICM7 > ICM8 > ICM5 > ICM6 > ICM3 > ICM4 > ICM1 > ICM2 > ICM9. Multivariate and PCA analyses also revealed a positive correlation between physiological parameters, barring NAR and both grain and stover yields. Our study proposes an explanation for improved productivity of blackgram-intercropped maize under CA-based ICM management through significant improvements in physiological and photosynthetic characteristics and crop vigour. Overall, the CA-based ICM module ICM7 coupled with the maize + blackgram intercropping system could be suggested for wider adoption to enhance the maize production in semiarid regions of India and similar agroecologies across the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.