When anyone is looking to enroll for a freely available online course so the first and famous name comes in front of the searcher is MOOC courses. So here in this article our focus is to collect the comments by enrolled users for the specified MOOC course and apply sentiment analysis over that data. The significance of our article is to introduce a proficient sentiment analysis algorithm with high perceptive execution in MOOC courses, by seeking after the standards of gathering various supervised learning methods where the performance of various supervised machine learning algorithms in performing sentiment analysis of MOOC data. Some research questions have been addressed on sentiment analysis of MOOC data. For the assessment task, we have investigated a large no of MOOC courses, with the different Supervised Learning methods and calculated accuracy of the data by using parameters such as Precision, Recall and F1 Score. From the results we can conclude that when the bigram model was applied to the logistic regression, the Multilayer Perceptron (MLP) overcomes the accuracy by other algorithms as SVM, Naive Bayes and achieved an accuracy of 92.44 percent. To determine the sentiment polarity of a sentence, the suggested method use term frequency (No of Positive, Negative terms in the text) to calculate the sentiment polarity of the text. We use a logistic regression Function to predict the sentiment classification accuracy of positive and negative comments from the data.
This chapter aims to introduce the common methods and practices of statistical machine learning techniques. It contains the development of algorithms, applications of algorithms and also the ways by which they learn from the observed data by building models. In turn, these models can be used to predict. Although one assumes that machine learning and statistics are not quite related to each other, it is evident that machine learning and statistics go hand in hand. We observe how the methods used in statistics such as linear regression and classification are made use of in machine learning. We also take a look at the implementation techniques of classification and regression techniques. Although machine learning provides standard libraries to implement tons of algorithms, we take a look on how to tune the algorithms and what parameters of the algorithm or the features of the algorithm affect the performance of the algorithm based on the statistical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.