Electromagnetic induction (EMI) systems measure the soil apparent electrical conductivity (ECa), which is related to the soil water content, texture, and salinity changes. Large-scale EMI measurements often show relevant areal ECa patterns, but only few researchers have attempted to resolve vertical changes in electrical conductivity that in principle can be obtained using multiconfiguration EMI devices. In this work, we show that EMI measurements can be used to determine the lateral and vertical distribution of the electrical conductivity at the field scale and beyond. Processed ECa data for six coil configurations measured at the Selhausen (Germany) test site were calibrated using inverted electrical resistivity tomography (ERT) data from a short transect with a high ECa range, and regridded using a nearest neighbor interpolation. The quantitative ECa data at each grid node were inverted using a novel three-layer inversion that uses the shuffled complex evolution (SCE) optimization and a Maxwell-based electromagnetic forward model. The obtained 1-D results were stitched together to form a 3-D subsurface electrical conductivity model that showed smoothly varying electrical conductivities and layer thicknesses, indicating the stability of the inversion. The obtained electrical conductivity distributions were validated with low-resolution grain size distribution maps and two 120 m long ERT transects that confirmed the obtained lateral and vertical large-scale electrical conductivity patterns. Observed differences in the EMI and ERT inversion results were attributed to differences in soil water content between acquisition days. These findings indicate that EMI inversions can be used to infer hydrologically active layers.
The NEURON simulator has been developed over the past three decades and is widely used by neuroscientists to model the electrical activity of neuronal networks. Large network simulation projects using NEURON have supercomputer allocations that individually measure in the millions of core hours. Supercomputer centers are transitioning to next generation architectures and the work accomplished per core hour for these simulations could be improved by an order of magnitude if NEURON was able to better utilize those new hardware capabilities. In order to adapt NEURON to evolving computer architectures, the compute engine of the NEURON simulator has been extracted and has been optimized as a library called CoreNEURON. This paper presents the design, implementation, and optimizations of CoreNEURON. We describe how CoreNEURON can be used as a library with NEURON and then compare performance of different network models on multiple architectures including IBM BlueGene/Q, Intel Skylake, Intel MIC and NVIDIA GPU. We show how CoreNEURON can simulate existing NEURON network models with 4–7x less memory usage and 2–7x less execution time while maintaining binary result compatibility with NEURON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.