Deregulation of the phosphoinositide 3-kinase (PI3K) signaling pathway such as by PTEN loss or PIK3CA mutation occurs frequently in human cancer and contributes to resistance to antitumor therapies. Inhibition of key signaling proteins in the pathway therefore represents a valuable targeting strategy for diverse cancers.
alpha-Piperidine-beta-sulfone hydroxamate derivatives were explored that are potent for matrix metalloproteinases (MMP)-2, -9, and -13 and are sparing of MMP-1. The investigation of the beta-sulfones subsequently led to the discovery of hitherto unknown alpha-sulfone hydroxamates that are superior to the corresponding beta-sulfones in potency for target MMPs, selectivity vs MMP-1, and exposure when dosed orally. alpha-Piperidine-alpha-sulfone hydroxamate 35f (SC-276) was advanced through antitumor and antiangiogenesis assays and was selected for development. Compound 35f demonstrates excellent antitumor activity vs MX-1 breast tumor in mice when dosed orally as monotherapy or in combination with paclitaxel.
α-Sulfone-α-piperidine and α-tetrahydropyranyl hydroxamates were explored that are potent inhibitors of MMP's-2, -9, and -13 that spare MMP-1, with oral efficacy in inhibiting tumor growth in mice and left-ventricular hypertrophy in rats and in the bovine cartilage degradation ex vivo explant system. α-Piperidine 19v (SC-78080/SD-2590) was selected for development toward the initial indication of cancer, while α-piperidine and α-tetrahydropyranyl hydroxamates 19w (SC-77964) and 9i (SC-77774), respectively, were identified as backup compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.