In plant microbial fuel cells or p-MFCs living plants photosynthesize between two electrodes. The plant exudes organic waste material from the roots. In the rhizosphere, bacteria consume these wastes by oxidizing them in contrast to the atmosphere that reduces it. This redox reaction along with photosynthesis can be harnessed as an energy source in the form of bioelectricity. In this work, the plant Withania somnifera (L.) Dunal was used for generating bioelectricity from the root exudates and organic matter available in the soil. An open circuit voltage of 930 ± 21 mV was achieved between multiple cycles of operation. The cell voltage further increased to 1260 ± 140 mV with enrichment in the form of discards from vegetable matter. The peak recorded voltage was 1400 mV. Graphite fibre felt electrodes ensured uniform microbial growth with power densities that were achieved at 57 mW/m2 and 84 mW/m2 with and without enrichment respectively. ATR-FTIR demonstrated complete degradation of specific compounds attached to the carbon matrix in the soil along with the polysaccharide content from the enrichments. Additionally, this work also monitored the changes in soil pH and its homogeneity, the impact of photosynthetically active radiation, humidity, and the presence of CO2 in the air, and how it affects plant growth and ultimately the microbes at the rhizosphere which accounted for the bioremediation and the resultant bioelectricity production. SEM imaging further confirmed the importance of anaerobic environment and electrode properties that allow the growth of conductive biofilms from the electrochemically active microbes present in the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.