In this paper, we present the design, implementation, and evaluation of a secure sensing data processing and logging system. The system is inspired and enabled by blockchain. In this system, a public blockchain is used as immutable data store to store the most critical data needed to secure the system. Furthermore, several innovative blockchain-inspired mechanisms have been incorporated into the system to provide additional security for the system's operations. The first priority in securing sensing data processing and logging is admission control, i.e., only legitimate sensing data are accepted for processing and logging. This is achieved via a sensor identification and authentication mechanism. The second priority is to ensure that the logged data remain intact overtime. This is achieved by storing a small amount of data condensed from the raw sensing data on a public blockchain. A Merkel-tree based mechanism is devised to link the raw sensing data stored off-chain to the condensed data placed on public blockchain. This mechanism passes the data immutability property of a public blockchain to the raw sensing data stored off-chain. Third, the raw sensing data stored off-chain are secured with a self-protection mechanism where the raw sensing data are grouped into chained blocks with a moderate amount of proof-of-work. This scheme prevents an adversary from making arbitrary changes to the logged data within a short period of time. Fourth, mechanisms are developed to facilitate the search of the condensed data placed on the public blockchain and the verification of the raw sensing data using the condensed data placed on the public blockchain. The system is implemented in Python except the graphical user interface, which is developed using C#. The functionality and feasibility of the system have been evaluated locally and with two public blockchain systems, one is the IOTA Shimmer test network, and the other is Ethereum.
The demand for the digital monitoring of environmental ecosystems is high and growing rapidly as a means of protecting the public and managing the environment. However, before data, algorithms, and models can be mobilized at scale, there are considerable concerns associated with privacy and security that can negatively affect the adoption of technology within this domain. In this paper, we propose the advancement of electronic environmental monitoring through the capability provided by the blockchain. The blockchain’s use of a distributed ledger as its underlying infrastructure is an attractive approach to counter these privacy and security issues, although its performance and ability to manage sensor data must be assessed. We focus on a new distributed ledger technology for the IoT, called IOTA, that is based on a directed acyclic graph. IOTA overcomes the current limitations of the blockchain and offers a data communication protocol called masked authenticated messaging for secure data sharing among Internet of Things (IoT) devices. We show how the application layer employing the data communication protocol, MAM, can support the secure transmission, storage, and retrieval of encrypted environmental sensor data by using an immutable distributed ledger such as that shown in IOTA. Finally, we evaluate, compare, and analyze the performance of the MAM protocol against a non-protocol approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.