Fine particulate matter levels at four air sampling stations in the Houston, TX area are apportioned to quantify the impact of emissions from a local refinery during a reported emission event. Through quantification of lanthanum and lanthanides using a recently developed analytical technique, the impacts of emissions from fluidized-bed catalytic cracking (FCC) units are quantitatively tracked across the Houston region. The results show a significant (33-106-fold) increase in contributions of FCC emissions to PM2.5 compared with background levels associated with routine operation. This impact from industrial emissions to ambient air quality occurs simultaneously with a larger, regional haze episode that lead to elevated PM2.5 concentrations throughout the entire region. By focusing on detailed chemical analysis of unique maker metals (lanthanum and lanthanides), the impact of emissions from the FCC unit was tracked from the local refinery that reported the emission event to a site approximately 50 km downwind, illustrating the strength of the analytical method to isolate an important source during a regional haze episode not related to the emission event. While this source apportionment technique could separate contributions from FCC emissions, improved time-resolved sampling is proposed to more precisely quantify the impacts of transient emission events on ambient PM2.5.
Fine particulate matter (PM) samples collected in a highway tunnel in Houston, TX, were analyzed to quantify the concentrations of 14 n-alkanes, 12 polycyclic aromatic hydrocarbons, and nine petroleum biomarkers, as well as 21 metals, with the ultimate aim of identifying appropriate tracers for diesel engines. First, an exploratory multivariate dimensionality reduction technique called principal component analysis (PCA) was employed to identify all potential candidates for tracers. Next, emission indices were calculated to interpret PCA results physically. Emission indices of n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, fluoranthene, and pyrene were correlated highly and increased strongly with percentage carbon present in the tunnel emanating from diesel vehicles. This suggests that these organic compounds are useful molecular markers to separate emissions from diesel and gasoline engines. Additionally, the results are the first quantification of the metal composition of PM with aerodynamic diameters smaller than 2.5 microm (PM2.5) emissions from mobile sources in Houston. PCA of trace metal concentrations followed by emission index calculations revealed that barium in fine airborne particles can be linked quantitatively to diesel engine emissions, demonstrating its role as an elemental tracer for heavy-duty trucks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.