In the current information age, the human lifestyle has become more knowledge-oriented, leading to sedentary employment. This has given rise to a number of health and mental disorders. Mental wellness is one of the most neglected, however crucial, aspects of today’s fast-paced world. Mental health issues can, both directly and indirectly, affect other sections of human physiology and impede an individual’s day-to-day activities and performance. However, identifying the stress and finding the stress trend for an individual that may lead to serious mental ailments is challenging and involves multiple factors. Such identification can be achieved accurately by fusing these multiple modalities (due to various factors) arising from a person’s behavioral patterns. Specific techniques are identified in the literature for this purpose; however, very few machine learning-based methods are proposed for such multimodal fusion tasks. In this work, a multimodal AI-based framework is proposed to monitor a person’s working behavior and stress levels. We propose a methodology for efficiently detecting stress due to workload by concatenating heterogeneous raw sensor data streams (e.g., face expressions, posture, heart rate, and computer interaction). This data can be securely stored and analyzed to understand and discover personalized unique behavioral patterns leading to mental strain and fatigue. The contribution of this work is twofold: firstly, proposing a multimodal AI-based strategy for fusion to detect stress and its level and, secondly, identifying a stress pattern over a period of time. We were able to achieve 96.09% accuracy on the test set in stress detection and classification. Further, we were able to reduce the stress scale prediction model loss to 0.036 using these modalities. This work can prove important for the community at large, specifically those working sedentary jobs, to monitor and identify stress levels, especially in current times of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.