BACKGROUND:Machine learning (ML) holds promise as a tool to guide clinical decision making by predicting in-hospital mortality for patients with traumatic brain injury (TBI). Previous models such as the international mission for prognosis and clinical trials in TBI (IMPACT) and the corticosteroid randomization after significant head injury (CRASH) prognosis calculators can potentially be improved with expanded clinical features and newer ML approaches.OBJECTIVE:To develop ML models to predict in-hospital mortality for both the high-income country (HIC) and the low- and middle-income country (LMIC) settings.METHODS:We used the Duke University Medical Center National Trauma Data Bank and Mulago National Referral Hospital (MNRH) registry to predict in-hospital mortality for the HIC and LMIC settings, respectively. Six ML models were built on each data set, and the best model was chosen through nested cross-validation. The CRASH and IMPACT models were externally validated on the MNRH database.RESULTS:ML models built on National Trauma Data Bank (n = 5393, 84 predictors) demonstrated an area under the receiver operating curve (AUROC) of 0.91 (95% CI: 0.85-0.97) while models constructed on MNRH (n = 877, 31 predictors) demonstrated an AUROC of 0.89 (95% CI: 0.81-0.97). Direct comparison with CRASH and IMPACT models showed significant improvement of the proposed LMIC models regarding AUROC (P = .038).CONCLUSION:We developed high-performing well-calibrated ML models for predicting in-hospital mortality for both the HIC and LMIC settings that have the potential to influence clinical management and traumatic brain injury patient trajectories.
BACKGROUND: Spinal cord stimulation (SCS) effectively reduces opioid usage in some patients, but preoperatively, there is no objective measure to predict who will most benefit. OBJECTIVE: To predict successful reduction or stabilization of opioid usage after SCS using machine learning models we developed and to assess if deep learning provides a significant benefit over logistic regression (LR). METHODS: We used the IBM MarketScan national databases to identify patients undergoing SCS from 2010 to 2015. Our models predict surgical success as defined by opioid dose stability or reduction 1 year after SCS. We incorporated 30 predictors, primarily regarding medication patterns and comorbidities. Two machine learning algorithms were applied: LR with recursive feature elimination and deep neural networks (DNNs). To compare model performances, we used nested 5-fold cross-validation to calculate area under the receiver operating characteristic curve (AUROC). RESULTS: The final cohort included 7022 patients, of whom 66.9% had successful surgery. Our 5-variable LR performed comparably with the full 30-variable version (AUROC difference <0.01). The DNN and 5-variable LR models demonstrated similar AUROCs of 0.740 (95% CI, 0.727-0.753) and 0.737 (95% CI, 0.728-0.746) (P = .25), respectively. The simplified model can be accessed at SurgicalML.com. CONCLUSION: We present the first machine learning-based models for predicting reduction or stabilization of opioid usage after SCS. The DNN and 5-variable LR models demonstrated comparable performances, with the latter revealing significant associations with patients' pre-SCS pharmacologic patterns. This simplified, interpretable LR model may augment patient and surgeon decision making regarding SCS.
Background The use of CT imaging enhanced by artificial intelligence to effectively diagnose COVID-19, instead of or in addition to reverse transcription-polymerase chain reaction (RT-PCR), can improve widespread COVID-19 detection and resource allocation. Methods 904 axial lung window CT slices from 338 patients in 17 countries were collected and labeled. The data included 606 images from COVID-19 positive patients (confirmed via RT-PCR), 224 images of a variety of other pulmonary diseases including viral pneumonias, and 74 images of normal patients. We developed, trained, validated, and tested an object detection model which detects features in three categories: ground-glass opacities (GGOs) for COVID-19, GGOs for non-COVID-19 diseases, and features that are inconsistent with a COVID-19 diagnosis. These collected features are passed into an interpretable decision tree model to make a suggested diagnosis. Results On an independent test of 219 images from COVID-19 positive, a variety of pneumonia, and healthy patients, the model predicted COVID-19 diagnoses with an accuracy of 96.80 % (95% confidence interval [CI], 96.75 to 96.86) , AUC-ROC of 0.9664 (95% CI, 0.9659 to 0.9671) , sensitivity of 98.33% (95% CI, 98.29 to 98.40) , precision of 95.93% (95% CI, 95.83 to 95.99), and specificity of 94.95% (95% CI, 94.84 to 95.05). On an independent test of 34 images from asymptomatic COVID-19 positive patients, our model achieved an accuracy of 97.06% (95% CI, 96.81 to 97.06) and a sensitivity of 96.97% (95% CI, 96.71 to 96.97). Similarly high performance was also obtained for out-of-sample countries, and no significant performance difference was obtained between genders. Conclusion We present an interpretable artificial intelligence CT analysis tool to diagnose COVID-19 in both symptomatic and asymptomatic patients. Further, our model is able to differentiate COVID-19 GGOs from similar pathologies suggesting that GGOs can be disease-specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.