The following research study focuses on improving the solubility of zaleplon (BCS class II drug) via micronization technique in order to enhance its oral delivery in orodispersible formulations. Zaleplon along with a surfactant solution was micronized by ultrasonication. The micronization process reduced the particle size of the crystalline drug about six-fold from its original size of 155.5 μm. The micronized zalepon dispersion was lyophilized to allow for a change in the state of matter (to a powder). The superior dissolution parameters (Q, Q, IDR, MDR, MDT, DE, and RDR) of zaleplon in microcrystalline form over the original crystalline form in in vitro dissolution studies had unraveled that micronization technique is an efficient tool in enhancing drug solubility. The micronized zaleplon solid dispersion (after lyophilization) was loaded into orodispersible tablet (ODT) and orodispersible film (ODF) formulations. The positive quality of ODT with adequate hardness and smooth texture was attributing to the presence of Pearlitol Flash® as a ready to use ODT platform. On the other hand, the ODF loaded with micronized zaleplon and prepared with Lycoat® RS 720 (as a film former) ensured adequate tensile strength. The disintegration time of ODT and ODF was 30 ± 5 and 35 ± 5 s, respectively. Thus, the orodispersible formulations containing micronized zaleplon have a strong potential for rapid disintegration following superior absorption in solution state through oral cavity into the blood stream, envisaging better oral delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.