Identifying the point defects in 2D materials is important for many applications. Recent studies have proposed that W vacancies are the predominant point defect in 2D WSe2, in contrast to theoretical studies, which predict that chalcogen vacancies are the most likely intrinsic point defects in transition metal dichalcogenide semiconductors. We show using first principles calculations, scanning tunneling microscopy (STM) and scanning transmission electron microscopy experiments, that W vacancies are not present in our CVD-grown 2D WSe2. We predict that O-passivated Se vacancies (OSe) and O interstitials (Oins) are present in 2D WSe2, because of facile O2 dissociation at Se vacancies, or due to the presence of WO3 precursors in CVD growth. These defects give STM images in good agreement with experiment. The optical properties of point defects in 2D WSe2 are important because single photon emission (SPE) from 2D WSe2 has been observed experimentally. While strain gradients funnel the exciton in real space, point defects are necessary for the localization of the exciton at length scales that enable photons to be emitted one at a time. Using state-of-the-art GW-Bethe-Salpeter-equation calculations, we predict that only Oins defects give localized excitons within the energy range of SPE in previous experiments, making them a likely source of previously observed SPE. No other point defects (OSe, Se vacancies, W vacancies and SeW antisites)give localized excitons in the same energy range. Our predictions suggest ways to realize SPE in related 2D materials and point experimentalists toward other energy ranges for SPE in 2D WSe2.
In condensed matter physics the quasi two-dimensional electron gas at the interface of two different insulators, polar LaAlO3 on nonpolar SrTiO3 (LaAlO3/SrTiO3) is a spectacular and surprising observation. This phenomenon is LaAlO3 film thickness dependent and may be explained by the polarization catastrophe model, in which a charge transfer of 0.5e(-) from the LaAlO3 film into the LaAlO3/SrTiO3 interface is expected. Here we show that in conducting samples (≥ 4 unit cells of LaAlO3) there is indeed a ~0.5e(-) transfer from LaAlO3 into the LaAlO3/SrTiO3 interface by studying the optical conductivity in a broad energy range (0.5-35 eV). Surprisingly, in insulating samples (≤ 3 unit cells of LaAlO3) a redistribution of charges within the polar LaAlO3 sublayers (from AlO2 to LaO) as large as ~0.5e(-) is observed, with no charge transfer into the interface. Hence, our results reveal the different mechanisms for the polarization catastrophe compensation in insulating and conducting LaAlO3/SrTiO3 interfaces.
Single-layer molybdenum disulfide (MoS) has attracted significant attention due to its electronic and physical properties, with much effort invested toward obtaining large-area high-quality monolayer MoS films. In this work, we demonstrate a reactive-barrier-based approach to achieve growth of highly homogeneous single-layer MoS on sapphire by the use of a nickel oxide foam barrier during chemical vapor deposition. Due to the reactivity of the NiO barrier with MoO, the concentration of precursors reaching the substrate and thus nucleation density is effectively reduced, allowing grain sizes of up to 170 μm and continuous monolayers on the centimeter length scale being obtained. The quality of the monolayer is further revealed by angle-resolved photoemission spectroscopy measurement by observation of a very well resolved electronic band structure and spin-orbit splitting of the bands at room temperature with only two major domain orientations, indicating the successful growth of a highly crystalline and well-oriented MoS monolayer.
Using wide spectral range in situ spectroscopic ellipsometry with systematic ultra high vacuum annealing and in situ exposure to oxygen, we report the complex dielectric function of MoS2 isolating the environmental effects and revealing the crucial role of unpassivated and passivated sulphur vacancies. The spectral weights of the A (1.92 eV) and B (2.02 eV) exciton peaks in the dielectric function reduce significantly upon annealing, accompanied by spectral weight transfer in a broad energy range. Interestingly, the original spectral weights are recovered upon controlled oxygen exposure. This tunability of the excitonic effects is likely due to passivation and reemergence of the gap states in the bandstructure during oxygen adsorption and desorption, respectively, as indicated by ab initio density functional theory calculation results. This work unravels and emphasizes the important role of adsorbed oxygen in the optical spectra and many-body interactions of MoS2.
Using a combination of ultraviolet-vacuum ultraviolet reflectivity and spectroscopic ellipsometry, we observe a resonant exciton at an unusually high energy of 6.3 eV in epitaxial graphene. Surprisingly, the resonant exciton occurs at room temperature and for a very large number of graphene layers N ≈ 75, thus suggesting a poor screening in graphene. The optical conductivity (σ 1 ) of a resonant exciton scales linearly with the number of graphene layers (up to at least 8 layers), implying the quantum character of electrons in graphene. Furthermore, a prominent excitation at 5.4 eV, which is a mixture of interband transitions from π to π * at the M point and a π plasmonic excitation, is observed. In contrast, for graphite the resonant exciton is not observable but strong interband transitions are seen instead. Supported by theoretical calculations, for N 28 the σ 1 is dominated by the resonant exciton, while for N > 28 it is a mixture between exitonic and interband transitions. The latter is characteristic for graphite, indicating a crossover in the electronic structure. Our study shows that important elementary excitations in graphene occur at high binding energies and elucidate the differences in the way electrons interact in graphene and graphite. Graphene, a one-layer-thick carbon honeycomb structure, has recently attracted a lot of attention due its exotic quantum properties.1 In addition to the well-known electronic properties, such as ballistic electron transport, 1-3 quantum Hall effect, 4 tunable band gap, 5,6 and physics driven by many-body interactions, 7 graphene also displays very interesting optical properties. For instance, due to its low-energy excitation graphene becomes highly transparent in the visible spectral range and its infrared optical conductivity can be tuned using a gate voltage.8 These particular properties of graphene potentially result in exciting optoelectronic applications.Recent theoretical studies based on the ab initio GW and Bethe-Salpeter equation (BSE) approach by Yang et al. 9 and Trevisanutto et al. 10 have predicted the existence and have highlighted the importance of resonant excitonic effects in the optical absorption of graphene. However, there is disagreement as to the origin and position of the exciton. In Ref. 9 the calculations were done up to 7 eV and the resonant exciton was predicted to occur at 4.6 eV due to electron-hole interaction in the π * and π bands at the M point. In Ref. 10, however, the calculations were done at a much higher energy of 22 eV and the resonant exciton was predicted to appear at 8.3 eV due the background single-particle continuum of dipole forbidden transition at the the point. Despite their disagreement, both have agreed that resonant excitons play important role in elementary excitations in graphene and thus its understanding is crucial.A direct way to probe a resonant exciton in graphene is to measure its complex dielectric response in wide energy range.10 Despite reports on the optical properties of graphene over the visible energy r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.