Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O-H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. Experiments performed on materials impregnated with pyridine also allow for the direct detection of intermolecular hydrogen bonding interactions through the lengthening of O-H bonds.
Ceria (CeO2)‐supported metals are widely used as catalysts because of their exceptional redox properties. Here, we use surface contrast NMR methods to investigate the hydrogenation of phenol by Pd supported on ceria nanoparticles. We show that the rigid and planar binding of phenol to Pd is mediated by a weak and highly mobile association of the small molecule to ceria. Interestingly, while addition of phosphate to the mixture does not perturb the adsorption of phenol on Pd, it destabilizes its interaction with ceria and proportionally decreases the rate of catalytic conversion. Our data provide strong experimental evidence that weak interactions between adsorbate and ceria are catalytically competent and explain the exceptional performance of Pd/CeO2 for reductive conversions under mild reaction conditions.
Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark-state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel-stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200 nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found that the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. We believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.