Summary Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β-cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model which manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β-cell proliferation in humans, mice and zebrafish. Small molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β-cells, and mice lacking serpinB1 exhibit attenuated β-cell compensation in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.
Diabetes mellitus is a highly heterogeneous disorder encompassing several distinct forms with different clinical manifestations including a wide spectrum of age at onset. Despite many advances, the causal genetic defect remains unknown for many subtypes of the disease, including some of those forms with an apparent Mendelian mode of inheritance. Here we report two loss-of-function mutations (c.1655T>A [p.Leu552(∗)] and c.280G>A [p.Asp94Asn]) in the gene for the Adaptor Protein, Phosphotyrosine Interaction, PH domain, and leucine zipper containing 1 (APPL1) that were identified by means of whole-exome sequencing in two large families with a high prevalence of diabetes not due to mutations in known genes involved in maturity onset diabetes of the young (MODY). APPL1 binds to AKT2, a key molecule in the insulin signaling pathway, thereby enhancing insulin-induced AKT2 activation and downstream signaling leading to insulin action and secretion. Both mutations cause APPL1 loss of function. The p.Leu552(∗) alteration totally abolishes APPL1 protein expression in HepG2 transfected cells and the p.Asp94Asn alteration causes significant reduction in the enhancement of the insulin-stimulated AKT2 and GSK3β phosphorylation that is observed after wild-type APPL1 transfection. These findings-linking APPL1 mutations to familial forms of diabetes-reaffirm the critical role of APPL1 in glucose homeostasis.
Summary Investigation of cell cycle kinetics in mammalian pancreatic β-cells has mostly focused on transition from the quiescent (G0) to G1 phase. Here we report that centromere protein A (CENP-A), which is required for chromosome segregation during the M-phase, is necessary for adaptive β-cell proliferation. Receptor-mediated insulin signaling promotes DNA-binding activity of FoxM1 to regulate expression of CENP-A and polo-like kinase-1 (PLK1) by modulating cyclin dependent kinase-1/2. CENP-A deposition at the centromere is augmented by PLK1 to promote mitosis while knocking down CENP-A limits β-cell proliferation and survival. CENP-A deficiency in β-cells leads to impaired adaptive proliferation in response to pregnancy, acute and chronic insulin resistance, and aging in mice. Insulin-stimulated CENP-A/PLK1 protein expression is blunted in islets from patients with type 2 diabetes. These data implicate the insulin-FoxM1/PLK1/CENP-A pathway-regulated mitotic cell cycle progression as an essential component in the β-cell adaptation to delay and/or prevent progression to diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.