BackgroundHomology search is still a significant step in functional analysis for genomic data. Profile Hidden Markov Model-based homology search has been widely used in protein domain analysis in many different species. In particular, with the fast accumulation of transcriptomic data of non-model species and metagenomic data, profile homology search is widely adopted in integrated pipelines for functional analysis. While the state-of-the-art tool HMMER has achieved high sensitivity and accuracy in domain annotation, the sensitivity of HMMER on short reads declines rapidly. The low sensitivity on short read homology search can lead to inaccurate domain composition and abundance computation. Our experimental results showed that half of the reads were missed by HMMER for a RNA-Seq dataset. Thus, there is a need for better methods to improve the homology search performance for short reads.ResultsWe introduce a profile homology search tool named Short-Pair that is designed for short paired-end reads. By using an approximate Bayesian approach employing distribution of fragment lengths and alignment scores, Short-Pair can retrieve the missing end and determine true domains. In particular, Short-Pair increases the accuracy in aligning short reads that are part of remote homologs. We applied Short-Pair to a RNA-Seq dataset and a metagenomic dataset and quantified its sensitivity and accuracy on homology search. The experimental results show that Short-Pair can achieve better overall performance than the state-of-the-art methodology of profile homology search.ConclusionsShort-Pair is best used for next-generation sequencing (NGS) data that lack reference genomes. It provides a complementary paired-end read homology search tool to HMMER. The source code is freely available at https://sourceforge.net/projects/short-pair/.
Noncoding RNA (ncRNA) identification is highly important to modern biology. The state-of-the-art method for ncRNA identification is based on comparative genomics, in which evolutionary conservations of sequences and secondary structures provide important evidence for ncRNA search. For ncRNAs with low sequence conservation but high structural similarity, conventional local alignment tools such as BLAST yield low sensitivity. Thus, there is a need for ncRNA search methods that can incorporate both sequence and structural similarities. We introduce chain-RNA, a pairwise structural alignment tool that can effectively locate cross-species conserved RNA elements with low sequence similarity. In chain-RNA, stem-loop structures are extracted from dot plots generated by an efficient local-folding algorithm. Then, we formulate stem alignment as an extended 2D chain problem and employ existing chain algorithms. Chain-RNA is tested on a data set containing annotated ncRNA homologs and is applied to novel ncRNA search in a transcriptomic data set. The experimental results show that chain-RNA has better tradeoff between sensitivity and false positive rate in ncRNA prediction than conventional sequence similarity search tools and is more time efficient than structural alignment tools. The source codes of chain-RNA can be downloaded at http://sourceforge.net/projects/chain-rna/ or at http://www.cse.msu.edu/~leijikai/chain-rna/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.