Water monitors (Varanus salvator macromaculatus) are large lizards that inhabit wetlands. However, populations seem to be declining due to habitat fragmentation resulting from urban development. To develop an effective strategic conservation plan, the genetic diversity and population structure of water monitors at Bang Kachao Peninsula, a rich urban ecosystem in Bangkok, were analyzed using mitochondrial (mt) D‐loop II sequences and microsatellite genotyping. Both genetic markers indicated a high degree of population‐level genetic diversity. The consistency of the star‐shaped haplotype network and results of neutrality tests strongly suggest the occurrence of a recent expansion in the population, possibly driven by anthropogenic urbanization. Subpopulations at Bang Kachao Peninsula are unlikely but gene flow between water monitors has occurred, which is suggestive of female‐based dispersal. The large population of water monitors at Bang Kachao Peninsula creates conflict with local residents. Long‐term population management through translocation has been conducted by captive management at Varanus Farm Kamphaeng Saen. The results of genetic monitoring indicate that the captive research population was soundly established. Comparison of allelic profiles between the two populations is necessary before translocation of water monitor groups from Bang Kachao Peninsula to Varanus Farm Kamphaeng Saen to reduce human‐wildlife conflict. This work is the first step toward establishment of long‐term ecological monitoring and an in situ/ex‐situ conservation program, which are part of attempts to promote biodiversity in Thailand, following scientific principles.
Siamese cobra (Naja kaouthia) exhibits highly toxic venom, which causes morbidity and mortality. Accurate species identification through molecular approaches is very important to administer correct antivenoms. The Siamese cobra mitogenome contains 17,203 bp with slight AT bias (58.2%) containing 37 genes in identical order to snake mitogenomes; no tandem repeat was found in the control region. Phylogenetic analysis indicated that Siamese and other cobras had highly supported monophyletic clades similar to the genus Naja and close relationships with other elapid snakes. Our results will facilitate clinical diagnosis and enrich genomic resources for future evolutionary studies and conservation management.
Mouthbrooding fighting fish Betta apollon and B. simplex are widely distributed in Southeast Asia but urbanization is restricting their biodiversity. Complete mitochondrial genomes (mitogenomes) of B. apollon and B. simplex were determined to support systematic conservation programs. Mitogenome sequences were 16,536 and 16,549 bp in length with slight AT bias (56.68% and 56.60%), respectively, containing 37 genes with the order identical to most teleost mitogenomes. Phylogenetic analysis of B. apollon showed a closer relationship with B. simplex, grouped with B. pi as a monophyletic clade of mouthbrooders. Results will facilitate evolutionary studies, species diversity, and conservation management in fighting fishes.
Mitochondrial genomes (mitogenomes) of five Cyrtodactylus were determined. Their compositions and structures were similar to most of the available gecko lizard mitogenomes as 13 protein-coding, two rRNA and 22 tRNA genes. The non-coding control region (CR) of almost all Cyrtodactylus mitogenome structures contained a repeated sequence named the 75-bp box family, except for C. auribalteatus which contained the 225-bp box. Sequence similarities indicated that the 225-bp box resulted from the duplication event of 75-bp boxes, followed by homogenization and fixation in C. auribalteatus. The 75-bp box family was found in most gecko lizards with high conservation (55–75% similarities) and could form secondary structures, suggesting that this repeated sequence family played an important role under selective pressure and might involve mitogenome replication and the likelihood of rearrangements in CR. The 75-bp box family was acquired in the common ancestral genome of the gecko lizard, evolving gradually through each lineage by independent nucleotide mutation. Comparison of gecko lizard mitogenomes revealed low structural diversity with at least six types of mitochondrial gene rearrangements. Cyrtodactylus mitogenome structure showed the same gene rearrangement as found in most gecko lizards. Advanced mitogenome information will enable a better understanding of structure evolution mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.