Anatomical changes can occur during course of head-and-neck (H and N) radiotherapy like tumor shrinkage, decreased edema and/or weight loss. This can lead to discrepancies in planned and delivered dose increasing the dose to organs at risk. A study was conducted to determine the volumetric and dosimetric changes with the help of repeat computed tomography (CT) and replanning for selected H and N cancer patients treated with IMRT plans to see for these effects. In 15 patients with primary H and N cancer, a repeat CT scan after 3rd week of radiotherapy was done when it was clinically indicated and then two plans were generated on repeat CT scan, actual plan (AP) planned on repeat CT scan, and hybrid plan (HP), which was generated by applying the first intensity-modulated radiation therapy (IMRT) plan (including monitoring units) to the images of second CT scan. Both plans (AP and HP) on repeat CT scan were compared for volumetric and dosimetric parameter. The mean variation in volumes between CT and repeat CT were 44.32 cc, 82.2 cc, and 149.83 cc for gross tumor volume (GTV), clinical target volumes (CTV), and planning target volume (PTV), respectively. Mean conformity index and homogeneity index was 0.68 and 1.07, respectively for AP and 0.5 and 1.16, respectively for HP. Mean D95 and D99 of PTV was 97.92% (standard deviation, SD 2.32) and 93.4% (SD 3.75), respectively for AP and 92.8% (SD 3.83) and 82.8% (SD 8.0), respectively for HP. Increase in mean doses to right parotid, left parotid, spine, and brainstem were 5.56 Gy (Dmean), 3.28 Gy (Dmean), 1.25 Gy (Dmax), and 3.88 Gy (Dmax), respectively in HP compared to AP. Repeat CT and replanning reduces the chance of discrepancies in delivered dose due to volume changes and also improves coverage to target volume and further reduces dose to organ at risk.
In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as “head phantom” and goat meat as “tissue phantom”. The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD): 0.74), 2.36 (SD: 0.77), 3.62 (SD: 1.05), and 3.31 (SD: 0.78) for three-dimensional conformal radiotherapy (3DCRT) (head phantom), intensity modulated radiotherapy (IMRT; head phantom), 3DCRT (tissue phantom), and IMRT (tissue phantom), respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%), but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body.
A tissue equivalent head phantom was utilized in the stereotactic localization and dose verification of radiosurgery procedures with the Leksell Gamma Knife Unit at the University of Kentucky Medical Center. A radiation dose-dependent color-doped gel target was positioned within the head phantom and stereotactically localized using either angiography, CT, or MR techniques. Utilizing standard Gamma Knife treatment procedures, the head phantom was irradiated, which resulted in a color change of the gel tumor at the position of the treatment isocenter and thereby confirmed the localization procedure. Additionally, a radiation dosimeter (thermoluminescent dosimetry – TLD) was positioned within the head phantom and localized using an angiography frame and a standard radiation therapy simulator. The phantom skull measurements and the dosimeter coordinates were entered into the Leksell Gamma Knife dose planning computer (KULA) and an irradiation time for 40 Gy using the 18-mm collimator was determined. The TLD dose evaluations were relatively determined using a cobalt-60 calibration curve. The experimental dose verification results agreed well (±4%) with computer dose estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.