SUMMARYThis paper describes the development of an efficient and accurate algebraic multigrid finite element solver for analysis of linear elasticity problems in two-dimensional thin body elasticity. Such problems are commonly encountered during the analysis of thin film devices in micro-electro-mechanical systems. An algebraic multigrid based on element interpolation is adopted and streamlined for the development of the proposed solver. A new node-based agglomeration scheme is proposed for computationally efficient, aggressive and yet effective generation of coarse grids. It is demonstrated that the use of appropriate finite element discretization along with the proposed algebraic multigrid process preserves the rigid body modes that are essential for good convergence of the multigrid solution. Several case studies are taken up to validate the approach. The proposed node-based agglomeration scheme is shown to lead to development of sparse and efficient intergrid transfer operators making the overall multigrid solution process very efficient. The proposed solver is found to work very well even for Poisson's ratio >0.4. Finally, an application of the proposed solver is demonstrated through a simulation of a micro-electro-mechanical switch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.