Online product reviews provide data about the user"s perspective on the features that were experienced by them. Product features and corresponding opinions form a major part in analyzing the online product reviews. Extracting features from a huge number of reviews is classified into three major categories such as utilizing language rules, sequence labeling as well as the topic modeling. Latent Dirichlet Allocation (LDA) is one such topic model which clusters the document words into unsupervised learned topics using Dirichlet priors. The words so clustered are the features and opinion words in the product reviews domain. To identify appropriate product features from these clusters a hierarchical, domain independent Feature Ontology Tree (FOT) is applied to LDA clusters. The opinion bearing words of obtained product features are identified by utilizing the document indicators available from topic matrix of LDA. These indicators are useful to backtrack to the corresponding online review in which the product feature is present. The polarity of the opinion bearing word is calculated with the help of SentiWordNet. This improves the accuracy of the features using extracted LDA topic clusters and machine interpretation of polarity of opinion word is satisfactory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.