In multicellular organisms, the timing and placement of gene expression in a developing tissue assigns the fate of each cell in the embryo in order for a uniform field of cells to differentiate into a reproducible pattern of organs and tissues. This positional information is often achieved through the action of spatial gradients of morphogens. Spatial patterns of gene expression are paradoxically robust to variations in morphogen dosage, given that, by definition, gene expression must be sensitive to morphogen concentration. In this work we investigate the robustness of the Dorsal/NF-κB signaling module with respect to perturbations to the dosage of maternally-expressed dorsal mRNA. The Dorsal morphogen gradient patterns the dorsal-ventral axis of the early Drosophila embryo, and we found that an empirical description of the Dorsal gradient is highly sensitive to maternal dorsal dosage. In contrast, we found experimentally that gene expression patterns are highly robust. Although the components of this signaling module have been characterized in detail, how their function is integrated to produce robust gene expression patterns to variations in the dorsal maternal dosage is still unclear. Therefore, we analyzed a mechanistic model of the Dorsal signaling module and found that Cactus, a cytoplasmic inhibitor for Dorsal, must be present in the nucleus for the system to be robust. Furthermore, active Toll, the receptor that dissociates Cactus from Dorsal, must be saturated. Finally, the vast majority of robust descriptions of the system require facilitated diffusion of Dorsal by Cactus. Each of these three recently-discovered mechanisms of the Dorsal module are critical for robustness. These mechanisms synergistically contribute to changing the amplitude and shape of the active Dorsal gradient, which is required for robust gene expression. Our work highlights the need for quantitative understanding of biophysical mechanisms of morphogen gradients in order to understand emergent phenotypes, such as robustness.
Motivation Mathematical models in systems biology help generate hypotheses, guide experimental design, and infer the dynamics of gene regulatory networks. These models are characterized by phenomenological or mechanistic parameters, which are typically hard to measure. Therefore, efficient parameter estimation is central to model development. Global optimization techniques, such as evolutionary algorithms (EA), are applied to estimate model parameters by inverse modeling, i.e., calibrating models by minimizing a function that evaluates a measure of the error between model predictions and experimental data. EAs estimate model parameters “fittest individuals” by generating a large population of individuals using strategies like recombination and mutation over multiple “generations”. Typically, only a few individuals from each generation are used to create new individuals in the next generation. Improved Evolutionary Strategy by Stochastic Ranking (ISRES), proposed by Runnarson and Yao, is one such EA that is widely used in systems biology to estimate parameters. ISRES uses information at most from a pair of individuals in any generation to create a new population to minimize the error. In this paper we propose an efficient evolutionary strategy, ISRES+, which builds on ISRES by combining information from all individuals across the population and across all generations to develop a better understanding of the fitness landscape. Results ISRES+ uses the additional information generated by the algorithm during evolution to approximate the local neighborhood around the best-fit individual using linear least squares fits in one and two dimensions, enabling efficient parameter estimation. ISRES+ outperforms ISRES and results in fitter individuals with a tighter distribution over multiple runs, such that a typical run of ISRES+ estimates parameters with a higher goodness-of-fit compared to ISRES. Availability Algorithm and implementation: Github - https://github.com/gtreeves/isres-plus-bandodkar-2022. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.