The baculovirus expression vector system (BEVS) is an emerging tool for the production of recombinant proteins, vaccines and bio-pesticides. However, a system-level understanding of the complex infection process is important in realizing large-scale production at a lower cost. The entire baculovirus infection process is summarized as a combination of various modules and the existing mathematical models are discussed in light of these modules. This covers a systematic review of the present understanding of virus internalization, viral DNA replication, protein expression, budded virus (BV) and occlusion-derived virus (ODV) formation, few polyhedral (FP) and defective interfering particle (DIP) mutant formation, cell cycle modification and apoptosis during the viral infection process. The corresponding theoretical models are also included. Current knowledge regarding the molecular biology of the baculovirus/insect cell system is integrated with population balance and mass action kinetics models. Furthermore, the key steps for simulating cell and virus densities and their underlying features are discussed. This review may facilitate the further development and refinement of mathematical models, thereby providing the basis for enhanced control and optimization of bioreactor operation.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a highly transmissible virus causing the ongoing global pandemic, COVID-19. Evidence suggests that viral and host microRNAs play pivotal roles in progression of such infections. The decisive impact of viral miRNAs and their putative targets in modulating the transcriptomic profile of its host, however remains unexplored. We hypothesized that the SARS-CoV-2 derived miRNAs can potentially play a contributory role in its pathogenicity and aid in its survival. A series of computational tools predicted 34 SARS-CoV-2 encoded miRNAs and their putative targets in the host. Immune and apoptotic pathways were identified as most enriched pathways. Further investigation using a dataset of SARS-CoV-2 infected cells (available from public repository- GSE150392) revealed that 46 genes related to immune and apoptosis-related functions were deregulated. Of these 46 genes, 42 genes were identified to be significantly up-regulated and 4 genes were down-regulated
. In silico
analysis revealed all of the these significantly down-regulated genes to be putative targets of 9 out of 34 of our predicted viral miRNAs. Overall, 123 out of 324 genes that are differentially regulated in SARS-CoV2 infected cells, and also identified as putative targets of viral miRNAs, were found to be significantly down-regulated. KEGG pathway analysis using these genes revealed p53 signaling as the most enriched pathway – a pathway that is known to influence immune responses. This study thus provides the theoretical foundation for the underlying molecular mechanisms involved in progression of viral pathogenesis.
Hydrophobic drug molecules pose a significant challenge in immobilization on super-hydrophobic metallic surfaces like conventional titanium implants. Pre-coating surface modifications may yield a better platform with improved wettability for such purposes. Such modifications, as depicted in this study, were hypothesized to provide the requisite roughness to assist deposition of polymers like silk fibroin (SF) as a drug-binding matrix in addition to significant improvement in early protein adsorption, which facilitates faster cellular adhesion and proliferation. A silk-based localized drug delivery module was developed on the titanium surface and tested for its surface roughness, wettability, biocompatibility and in vitro differentiation potential of cells cultured on the coated metallic surfaces with/without external supplementation of the active metabolite of Tibolone. Conditioning of the matrix-coated implants with osteogenic as well as osteoclastogenic media supplemented with Tibolone stimulated the expression of early osteogenic gene and calcium deposition in the extracellular matrix. Significant inhibition in resorptive activity was also observed in the presence of the drug. To assess the efficacy of localized delivery of Tibolone via topographically modified titanium implants for inducing early peri-implant bone formation, osteoporosis was artificially induced in rats subjected to bilateral ovariectomy and implants were placed thereafter. Bone-specific release of Tibolone through the biomimetic matrix in osteoporotic rats collectively indicated significant improvement in peri-implant bone growth after 2 and 4 weeks (p < 0.05 compared to dummy-coated implants). These findings demonstrate for the first time that Tibolone released from SF matrix-coated implants can accelerate the biological stability of bone fixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.