The herpesvirus, polyomavirus, papillomavirus, and retrovirus families are associated with breast cancer. More effort is needed to assess the role of these viruses in the detection and diagnosis of breast cancer cases in women. The aim of this paper is to propose an efficient segmentation and classification system in the Mammography Image Analysis Society (MIAS) images of medical images. Segmentation became challenging for medical images because they are not illuminated in the correct way. The role of segmentation is essential in concern with detecting syndromes in human. This research work is on the segmentation of medical images based on intuitionistic possibilistic fuzzy c-mean (IPFCM) clustering. Intuitionist fuzzy c-mean (IFCM) and possibilistic fuzzy c-mean (PFCM) algorithms are hybridised to deal with problems of fuzzy c-mean. The introduced clustering methodology, in this article, retains the positive points of PFCM which helps to overcome the problem of the coincident clusters, thus the noise and less sensitivity to the outlier. The IPFCM improves the fundamentals of fuzzy c-mean by using intuitionist fuzzy sets. For the clustering of mammogram images for breast cancer detector of abnormal images, IPFCM technique has been applied. The proposed method has been compared with other available fuzzy clustering methods to prove the efficacy of the proposed approach. We compared support vector machine (SVM), decision tree (DT), rough set data analysis (RSDA) and Fuzzy-SVM classification algorithms for achieving an optimal classification result. The outcomes of the studies show that the proposed approach is highly effective with clustering and also with classification of breast cancer. The performance average segmentation accuracy for MIAS images with different noise level 5%, 7% and 9% of IPFCM is 91.25%, 87.50% and 85.30% accordingly. The average classification accuracy rates of the methods (Otsu, Fuzzy c-mean, IFCM, PFCM and IPFCM) for Fuzzy-SVM are 79.69%, 92.19%, 93.13%, 95.00%, and 98.85%, respectively.
The majority of imaging techniques use symmetric and asymmetric cryptography algorithms to encrypt digital media. Most of the research works contributed in the literature focus primarily on the Advanced Encryption Standard (AES) algorithm for encryption and decryption. This paper propose an analysis for performing image encryption and decryption by hybridization of Elliptic Curve Cryptography (ECC) with Hill Cipher (HC), ECC with Advanced Encryption Standard (AES) and ElGamal with Double Playfair Cipher (DPC). This analysis is based on the following parameters: (i) Encryption and decryption time, (ii) entropy of encrypted image, (iii) loss in intensity of the decrypted image, (iv) Peak Signal to Noise Ratio (PSNR), (v) Number of Pixels Change Rate (NPCR), and (vi) Unified Average Changing Intensity (UACI). The hybrid process involves the speed and ease of implementation from symmetric algorithms, as well as improved security from asymmetric algorithms. ECC and ElGamal cryptosystems provide asymmetric key cryptography, while HC, AES, and DPC are symmetric key algorithms. ECC with AES are perfect for remote or private communications with smaller image sizes based on the amount of time needed for encryption and decryption. The metric measurement with test cases finds that ECC and HC have a good overall solution for image encryption.
To obtain extensive annotated data for underresourced languages is challenging, so in this research, we have investigated whether it is beneficial to train models using multi-task learning. Sentiment analysis and offensive language identification share similar discourse properties. The selection of these tasks is motivated by the lack of large labelled data for user-generated code-mixed datasets. This paper works on code-mixed YouTube comments for Tamil, Malayalam, and Kannada languages. Our framework is applicable to other sequence classification problems irrespective of the size of the datasets. Experiments show that our multi-task learning model can achieve high results compared with single-task learning while reducing the time and space constraints required to train the models on individual
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.