Because the degree of meniscectomy leading to clinically significant outcomes is unknown, a prudent strategy is to preserve the greatest amount of meniscus possible.
Mesenchymal stem cells (MSCs) were isolated from bone marrow of 18 adult New Zealand White rabbits. These cells were culture expanded, suspended in type I collagen gel, and implanted into a surgically induced defect in the donor s right patellar tendon. A cell-free collagen gel was implanted into an identical control defect in the left patellar tendon. Repair tissues were evaluated biomechanically (n = 13) and histomorphometrically (n = 5) at 4 weeks after surgery. Compared to their matched controls, the MSC-mediated repair tissue demonstrated significant increases of 26% (p < 0.001), 18% (p < 0. 01), and 33% (p < 0.02) in maximum stress, modulus, and strain energy density, respectively. Qualitatively, there appeared to be minor improvements in the histological appearance of some of the MSC- mediated repairs, including increased number of tenocytes and larger and more mature-looking collagen fiber bundles. Morphometrically, however, there were no significant left-right differences in nuclear aspect ratio (shape) or nuclear alignment (orientation). Therefore, delivering a large number of mesenchymal stem cells to a wound site can significantly improve its biomechanical properties by only 4 weeks but produce no visible improvement in its microstructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.