The influence of the precursors, namely potassium ferrocyanide and potassium ferricyanide on the particles sizes of Prussian Blue (PB) and Prussian Green (PG), under identical reaction conditions have been investigated. It was found that the particle sizes influence the gravimetric capacity utilization of these materials as cathodes for aqueous potassium (K +) ion batteries. The PG particle sizes were on the order of 50-75 nm, whereas PB particles size were on the order of 2-10 microns. The PG cathodes demonstrated a reversible capacity of 121.4 mAhr/g, with a coulombic efficiency of 98.7% compared to PB cathodes which demonstrated 53.8 mAhr/g, with a coulombic efficiency of 100%. We interpret the increased capacity of PG batteries relative to PB batteries as being a result of the smaller particle size of PG, which results in greater accessibility of the cathode to K+ ions.
Both WS2 and SnS are 2-dimensional, van der Waals semiconductors, but with different crystal structures. Heteroepitaxy of these materials was investigated by growing 3 alternating layers of each of these materials using atomic layer deposition on 5 cm × 5 cm substrates. Initially, WS2 and SnS films were grown and characterized separately. Back-gated transistors of WS2 displayed n-type behavior with an effective mobility of 12 cm(2) V(-1) s(-1), whereas SnS transistors showed a p-type conductivity with a hole mobility of 818 cm(2) V(-1) s(-1). All mobility measurements were performed at room temperature. As expected, the heterostructure displayed an ambipolar behavior with a slightly higher electron mobility than that of WS2 transistors, but with a significantly reduced hole mobility. The reason for this drop can be explained with transmission electron micrographs that show the striation direction of the SnS layers is perpendicular to that of the WS2 with a 15 degree twist, hence the holes have to pass through van der Waals layers that results in drop of their mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.