Late-onset ataxia is common, often idiopathic, and can result from cerebellar, proprioceptive, or vestibular impairment; when in combination, it is also termed cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We used non-parametric linkage analysis and genome sequencing to identify a biallelic intronic AAGGG repeat expansion in the replication facsstor C subunit 1 (RFC1) gene as the cause of familial CANVAS and a frequent cause of late-onset ataxia, particularly if sensory neuronopathy and bilateral vestibular areflexia coexist. The expansion, which occurs in the poly(A) tail of an AluSx3 element and differs in both size and nucleotide sequence from the reference (AAAAG)11 allele, does not affect RFC1 expression in patient peripheral and brain tissue, suggesting no overt loss of function. These data, along with an expansion carrier frequency of 0.7% in Europeans, implies that biallelic AAGGG expansion in RFC1 is a frequent cause of late-onset ataxia.
No treatment for frontotemporal dementia (FTD), the second most common early-onset dementia, is available but therapeutics are being investigated to target the two main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hamstrung by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human iPSC-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease sub-types marked by TDP-43 inclusions. Lastly, we validated that truncated STMN2 RNA is elevated in the frontal cortex of a cohort of FTLD-TDP cases but not in controls or cases with progressive supranuclear palsy (PSP), a type of FTLD-tau. Further, in FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD.
TDP‐43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP‐43 function at physiological levels both in vitro and in vivo. Interestingly, we find that mutations within the C‐terminal domain of TDP‐43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP‐43 loss‐ and gain‐of‐function effects. TDP‐43 gain‐of‐function effects in these mice reveal a novel category of splicing events controlled by TDP‐43, referred to as “skiptic” exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain‐of‐function mutation in endogenous Tardbp causes an adult‐onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain‐of‐function and skiptic exons in ALS patient‐derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP‐43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.
Devoy et al. develop the first mouse model to fully recapitulate human FUS-ALS, as defined by midlife-onset progressive degeneration of motor neurons with dominant inheritance. A toxic gain of function occurs in the absence of FUS protein aggregation, involving disturbance of ribosomes and mitochondria at the endoplasmic reticulum.
Objective This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. Methods We carried out a genome‐wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene‐set enrichment, functional variant annotation, prediction and pathway analyses, were performed. Results Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10−17, odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37–1.66) and rs4519530 (p = 6.98 × 10−17, OR = 1.47, 95% CI = 1.34–1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10−8, OR = 1.36, 95% CI = 1.22–1.52), and rs11153082 (p = 1.85 × 10−8, OR = 1.30, 95% CI = 1.19–1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. Interpretation We identified and replicated several genome‐wide significant associations supporting a genetic predisposition in cluster headache in a genome‐wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype–phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193–202
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.