The cytoskeleton is a major focus of physical studies to understand organization inside cells given its primary role in cell motility, cell division, and cell mechanics. Recently, protein condensation has been shown to be another major intracellular organizational strategy. Here, we report that the microtubule crosslinking proteins, MAP65-1 and PRC1, can form phase separated condensates at physiological salt and temperature without additional crowding agents in vitro. The size of the droplets depends on the concentration of protein. MAP65 condensates are liquid at first and can gelate over time. We show that these condensates can nucleate and grow microtubule bundles that form asters, regardless of the viscoelasticity of the condensate. The droplet size directly controls the number of projections in the microtubule asters, demonstrating that the MAP65 concentration can control the organization of microtubules. When gel-like droplets nucleate and grow asters from a shell of tubulin at the surface, the microtubules are able to re-fluidize the MAP65 condensate, returning the MAP65 molecules to solution. This work implies that there is an interplay between condensate formation from microtubule-associated proteins, microtubule organization, and condensate dissolution that could be important for the dynamics of intracellular organization.
Microtubule organization in cells is essential for the internal structure and coordination of events of intracellular transport, mitosis, and cell motility. For many cell types, microtubule organization is dominated by centrosomal nucleation that use gamma-tubulin to template filaments. Yet, some cell types lack centrosomes or centrioles, such as plant cells. Instead, microtubules nucleate from regions with high concentrations of microtubule binding and nucleating proteins. A mechanism that can drive high local concentrations of nucleators is liquid-liquid phase separation of proteins with intrinsically disordered regions. Here, we report that the plant microtubule nucleator and crosslinking protein, MAP65-1, can form phase separated condensates at physiological salt and temperature without extra crowding agents. These condensates are liquid at first and can mature to gel-like phases over time and with different environmental conditions. We show that these condensates can nucleate and grow microtubule bundles that form asters, regardless of the viscoelasticity of the condensate. When gel-like droplets nucleate and grow asters from a shell of tubulin at the surface, the microtubules are able to re-fluidize the MAP65 condensate. Condensate-induced cytoskeletal formation could be a universal mechanism for organization of the microtubule and actin cytoskeletons in all cell types, especially cells without centrosomes.
The cytoskeleton is responsible for major internal organization and re-organization within the cell, all without a manager to direct the changes. This is especially the case during mitosis or meiosis, where the microtubules form the spindle during cell division. The spindle is the machinery used to segregate genetic material during cell division. Toward creating self-organized spindles in vitro, we recently developed a technique to reconstitute microtubules into spindle-like assemblies with a minimal set of microtubule-associated proteins and crowding agents. Specifically, MAP65 was used, which is an antiparallel microtubule crosslinker from plants, a homolog of Ase1 from yeast and PRC1 from mammalian organisms. This crosslinker self-organizes microtubules into long, thin, spindle-like microtubule self-organized assemblies. These assemblies are also similar to liquid crystal tactoids, and microtubules could be used as mesoscale mesogens. Here, protocols are presented for creating these microtubule tactoids, as well as for characterizing the shape of the assemblies using fluorescence microscopy and the mobility of the constituents using fluorescence recovery after photobleaching.
The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.